Next Generation Dairying Workshop 2021 23 November 2021

Agronomic value of recycled nutrients from dairy processing sludge - case of the research field trials in Ireland

Dr. S.M. Ashekuzzaman, мсіwем Teagasc, Environment Research Centre Johnstown Castle, Wexford, Ireland

@SM_Ashek

Nutri2Cycle

Fransition towards a more carbon and nutrient efficient agriculture

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 773682.

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

ontext: Dairy processing sludge?

Effluent quality: BOD: 16 mg L⁻¹ COD: 125 mg L⁻¹ TN: 5–25 mg L⁻¹ TP: 2–5 mg L⁻¹ SS: 30 mg L⁻¹

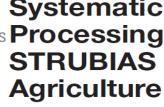
gures: Volume generation and disposal?

Dairy processing sludge and co-products: A review of present and future

re-use pathways in agriculture

W. Shi ^{a, b}, M.G. Healy ^b, S.M. Ashekuzzaman ^a, K. Daly ^a, J.J. Leahy ^c, O. Fenton ^{a, b,*}

Teagasc, Environmental Research Centre, Johnstown Castle, Co., Wexford, Ireland


Civil Engineering and Ryan Institute, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland tal Science, University of Limerick, Limerick, Ireland

Journal of Cleaner Production 314 (2021) 128035

DPS generation (per unit volume/mass of processed milk) and disposal pathways in different countries.

trontiers 🕈

SYSTEMATIC REVIEW published: 10 November 2021 doi: 10.3389/fsufs.2021.763020

Region	Water consumption	Effluents loads	DPS volume	Method of Disposal	Arezoo Taghi
EU	0.2–11 L/L processed milk	0.3×10^{6} – 3×10^{6} L (in a factory with capacity: 10^{6} L milk/day)	1-3t dry matter sludge (in a factory with capacity: 10 ⁶ L milk/day)	Wastewater: drained to river: sludge: land spread	EU Figure
EU	0.8–60 m ³ /t processed milk	0.9–60 m3 ³ /t processed milk	0.2–30 kg sludge/t processed milk	-	tons from milk prod
Sweden	0.96–4.0 L/L processed milk	0.86–4.3 L/L processed milk	-	Landfill, compost, irrigation, biogas production. In Denmark, 2/3 sludge from dairies is irrigated on	 Ireland - 1
Denmark	0.60–1.9 L/L processed milk	0.75–1.5 L/L processed milk	-	cultivated land and the rest is utilized in biogas production.	(39% of in
Finland	1.2–4.6 L/L processed milk	1.2–3.9 L/L processed milk	-		and 2017)
Norway	2.5–6.3 L/L processed milk	2.0–3.3 L/L processed milk	-		milk quot
Ireland	2.3 m ³ /m ³ processed milk	2.71 ± 0.9 L/L processed milk	15–19.7 kg sludge/m ³ milk processed	Sludge: land spread (63%), compost (13.6%), or removed by licensed contractors (23.4%)	EU - Total
Australia	0.07–2.90 L/L milk	-	31 kg organic waste/t product	Compost, fertiliser, stockfeed and recovery of marketable products.	12,840 to
United States	-	0.10–12.4 kg/kg milk	-213	Effluent: discharge into municipal sewage treatment system or irrigate on the land	EU - Total
United	-	170–2081 m ³ /d	-		17,490 to
States UK	1.8 L/kg product	1–5 L/L processed milk	-	Sludge: landfilling	

Dr. SM Ashekuzzaman Next Generation Dairying Workshop 23rd November 2021

Systematic Review of Dairy in Sustainable Food Systems Processing Sludge and Secondary STRUBIAS Products Used in

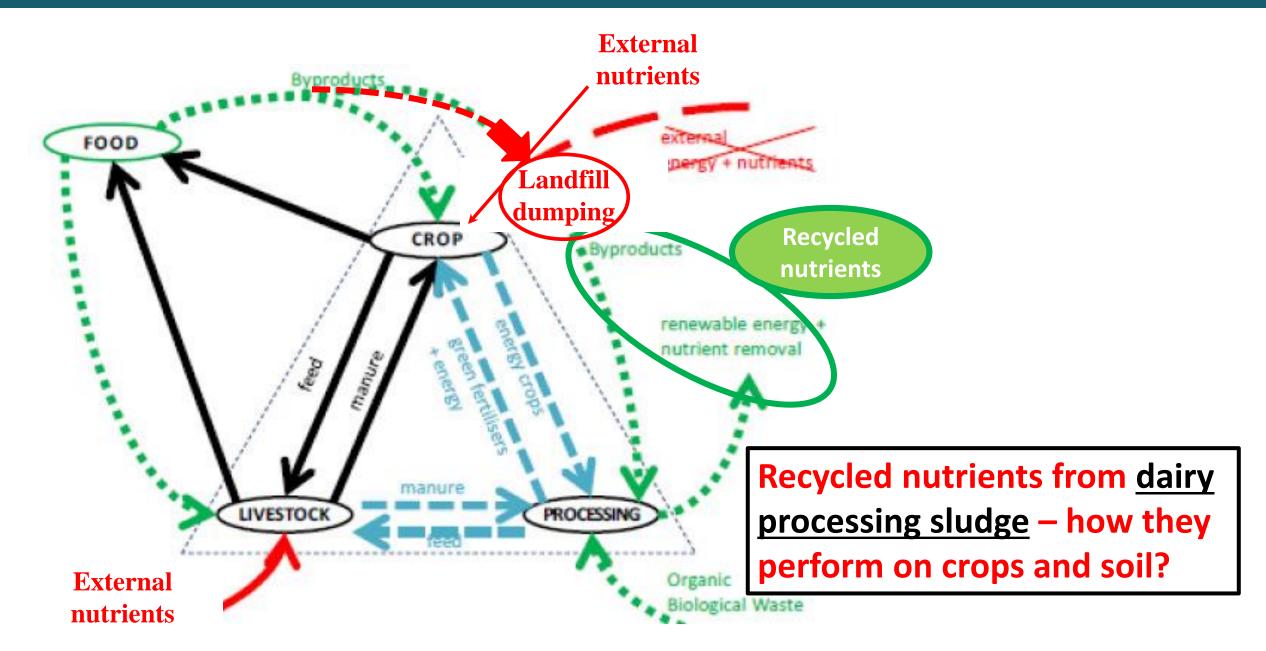
Yihuai Hu¹, Olha Khomenko^{2,3}, Wenxuan Shi^{2,4}, Ángel Velasco-Sánchez^{5,6}, S. M. Ashekuzzaman², Nadia Bennegadi-Laurent⁵, Karen Daly², Owen Fenton^{2*}, Mark G. Healy⁴, J. J. Leahy³, Peter Sørensen⁷, Sven G. Sommer¹, Arezoo Taghizadeh-Toosi[®] and Isabelle Trinsoutrot-Gattin⁵

e (2020) – 2.45 million n 144.6 million tons of duction **126,700** tons per year ncrease between 2012 ') (abolition of European tas in 2015) I recyclable phosphorus ons l recyclable nitrogen ons

increase nutrient recycling

- NAP Regulation (SI 31 2014): Good Agricultural Practice for Protection of Waters
- Teagasc Nutrient Advice: Greenbook (no information on dairy sludge presently)

- The new European Union (EU) Fertilising Products Regulation (EU, 2019) has expanded its scope to enable the use of recovered and bio-based fertilising products in line with EU Circular Economy Package goals adopted in December 2015 (EC, 2015)
- European Green Deal 'Farm to Fork Strategy for Sustainable Food'


The excess of nutrients in the environment is a major source of air, soil and water pollution, negatively impacting biodiversity and climate. The Commission will act to:

reduce nutrient losses by at least 50%, while ensuring no deterioration on soil fertility.

reduce fertilizer use by at least 20% by 2030.

Driving towards a circular, resource-efficient economy – processing nutrients from waste materials and prevents their losses

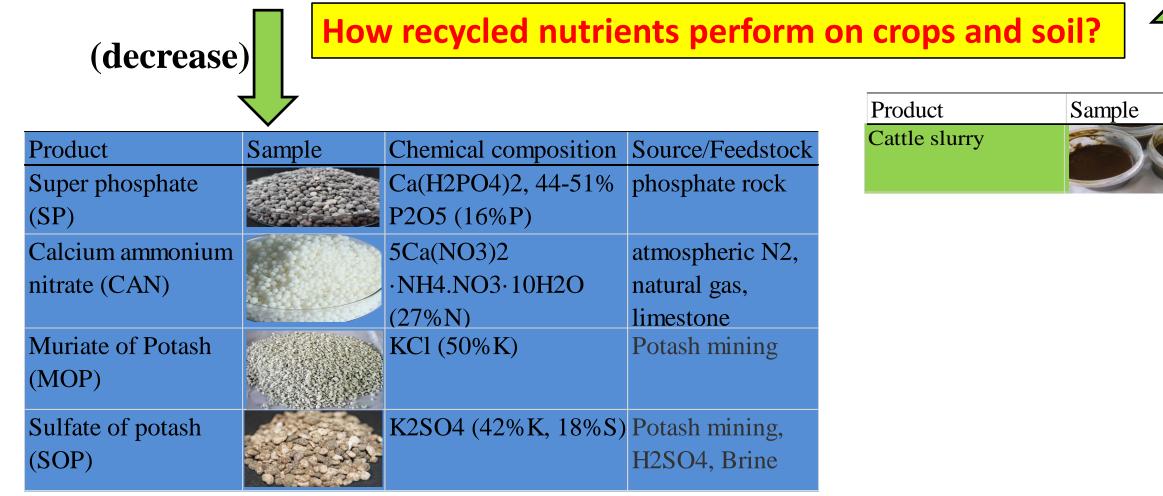
Nutri2Cycle Approach: Closing carbon and nutrient loop in the agro-production system

Triangle model for reconnecting nutrient and carbon flows between conventional agro-pillars (Nutri2Cycle Concept)

Dr. SM Ashekuzzaman Next Generation Dairying Workshop 23rd November 2021

Nutri2Cycle

Transition towards a more carbon and nutrient efficient agriculture in Europe


www.nutri2cycle.eu #Nutri2Cycle

iect has received funding from the European Union's Horizon


<u>Materials used to recycle nutrients</u>

Less C footprint

- **Saving** €
- **Increase local nutrient recycling**

Dr. SM Ashekuzzaman Next Generation Dairying Workshop 23rd November 2021

Chemical composition Source/Feedstock 0.6%P, 4.3%K, 0.4%S Livestock animals (dry basis)

4.6%P, 6%N, 3%Ca,	Dairy food
3%Al, 1.6%K, 0.6%S	processing
(dry basis)	wastewater
8.1%P, 1.8%N,	Dairy food
24%Ca, 0.4%K,	processing
0.3%S (dry basis)	wastewater

Nutrient composition & availability?

(two activated sludge - AI-DPS and Fe-DPS, and two 4 dairy sludge: Ca1, Ca2, Al and Fe lime-stabilised sludge - Ca₁- and Ca₂-DPS)

Sample	DM	N	Р	K	S	Ca	Al	Fe
	%	kg/t dry	weight					
DAF - Ca1	22	36.5	79.6	3.9	2.9	238	0.6	0.5
DAF - Ca2	31	19.3	128	4	3.2	278	0.9	3.8
AC - Fe	20	38.5	31.6	5.5	3.3	107	0.8	161.8
AC - Al	11	42.5	34.1	5.7	4.3	33	58.1	4.1
Cattle slurry	6.3	38.1	7.9	55.6	4.8			
Cattle slurry same	oles from Ir	ish farms (Berry et al.	2013)				

N and P Availability for crop uptake?

Agronomic trial: <u>Set-up and layout</u>

Treatmer	nt Rate N kg/ha	DM %	N g/kg DN	Dry mass A ton/ha	Wet mass ton/ha	Wet wt/p kg	lot				Hard Street Street	ptimum lable P	plant
Cal Ca2 Fe Al Control CAN CAN CAN CAN	60 60 60 60 0 20 40 60 80	22 31 20 11	36.5 19.3 38.5 42.5	1.644 3.109 1.558 1.412	7.4 10.2 7.8 12.8	11.8 16.3 12.5 20.5	H 20 Ju	<u>trial plots</u> arvest date 17: 7 th Jun ly, 14 th Sep ct.	e: e, 18 th	3 th		e rials @8×2 m	
CAN	100												
							Treatmen		DM	P		Wet mass	
			10					P kg/ha	%	g/kg DM	ton/ha	ton/ha	kg
			10	treatm	nents×	4 rep	Cal	P kg/ha 40	% 22	g/kg DM 79.6	ton/ha 0.502		kg 3.6
			10	treatm <u>P trial p</u>		4 re	Cal Ca2	P kg/ha 40 40	% 22 31	g/kg DM 79.6 128	ton/ha 0.502 0.313	ton/ha 2.3 1	kg 3.6 1.6
			10	P trial p Harves	<u>olots</u> t date:		Ca1 Ca2 Fe	P kg/ha 40 40 40	% 22 31 20	g/kg DM 79.6 128 31.6	ton/ha 0.502 0.313 1.264	ton/ha 2.3 1 6.3	kg 3.6 1.6 10.1
			10	P trial p Harves 2017: 7 ^t	<u>olots</u> t date: th June, 18	th July,	Cal Ca2 Fe Al	P kg/ha 40 40	% 22 31	g/kg DM 79.6 128	ton/ha 0.502 0.313	ton/ha 2.3 1	kg 3.6 1.6
			10	P trial p Harves 2017: 7 ^t	<u>olots</u> t date:	th July,	Ca1 Ca2 Fe	P kg/ha 40 40 40	% 22 31 20	g/kg DM 79.6 128 31.6	ton/ha 0.502 0.313 1.264	ton/ha 2.3 1 6.3	kg 3.6 1.6 10.1
			10	P trial p Harves 2017: 7 ^t 14 th Sep	olots t date: th June, 18 and 18 th (th July <u>,</u> Oct.	Cal Ca2 Fe Al Control	P kg/ha 40 40 40 40 0	% 22 31 20	g/kg DM 79.6 128 31.6	ton/ha 0.502 0.313 1.264	ton/ha 2.3 1 6.3	kg 3.6 1.6 10.1
				P trial p Harves 2017: 7 ^t 14 th Sep 2018: 22	olots t date: t ^h June, 18 and 18 th (2 nd March	th July <u>,</u> Oct.	Ca1 Ca2 Fe Al Control SP	P kg/ha 40 40 40 40 0 10	% 22 31 20	g/kg DM 79.6 128 31.6	ton/ha 0.502 0.313 1.264	ton/ha 2.3 1 6.3	kg 3.6 1.6 10.1
		eatn	10 nent	P trial p Harves 2017: 7 ^t 14 th Sep 2018: 22	olots t date: t ^h June, 18 and 18 th (2 nd March	th July <u>,</u> Oct.	Ca1 Ca2 Fe Al Control SP SP	P kg/ha 40 40 40 40 0 10 20	% 22 31 20	g/kg DM 79.6 128 31.6	ton/ha 0.502 0.313 1.264	ton/ha 2.3 1 6.3	kg 3.6 1.6 10.1

Efficiency of recycled N & P bioavailability

N & P bioavailability: Computational method (example for P)

Apparent P Recovery (APR)

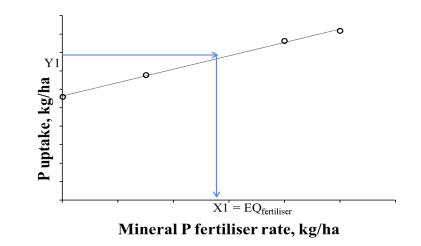
$$APR(\%) = \frac{P_{treatment} - P_{control}}{P_{applied}} \times 100$$

APR compares crop P uptake in an amended treatment with that in an unamended control treatment assuming amount of P provided by the soil is the same among plots

APR represent P uptake is due solely to the treatment

Relative P Effectiveness (RPE)

$$RPE(\%) = \frac{APR \ (\%)_{biosolids}}{APR \ (\%)_{mineral}} \times 100$$

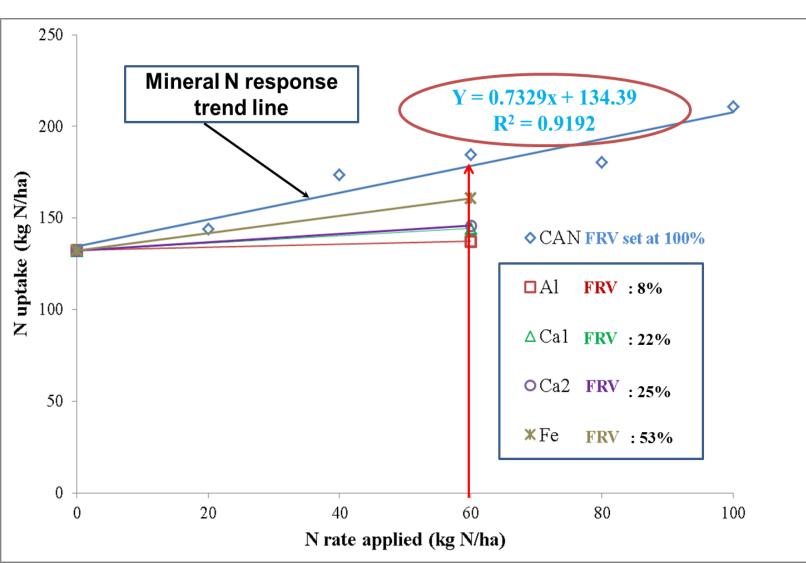

RPE allows comparison of the potential of the RDF treatment to provide bioavailable P with respect to mineral fertiliser

Fertilizer Phosphorus Equivalence (FPE)

$$FPE(\%) = \frac{EQ_{fertilizer}}{P_{applied}} \times 100$$

This method also provides % of P availability of RDF treatment by comparing crop response (P uptake or yield) with that of mineral fertiliser.

P Fertiliser Replacement Value (FRV)


N and P FRV

Sustainable Production and Consumption 25 (2021) 363-373

Grassland Phosphorus and Nitrogen Fertiliser Replacement value of Dairy Processing Dewatered Sludge

S.M. Ashekuzzaman*, Patrick Forrestal, Karl G. Richards, Karen Daly, Owen Fenton Teagasc, Environment Research Centre, Johnstown Castle, Co. Wexford, Ireland

- a great deal.
- Delay in N mineralisation and NH3 volatilisation processes.
- into fertiliser programmes
- affected by sludge applications despite the presence of high AI, Ca and Fe.

Dr. SM Ashekuzzaman Next Generation Dairying Workshop 23rd November 2021

The N FRV of tested dairy sludge samples varied

losses are likely to cause low available N pool in sludge. The exceptionally low N FRV of Al-sludge can be related to the poor sludge stabilization

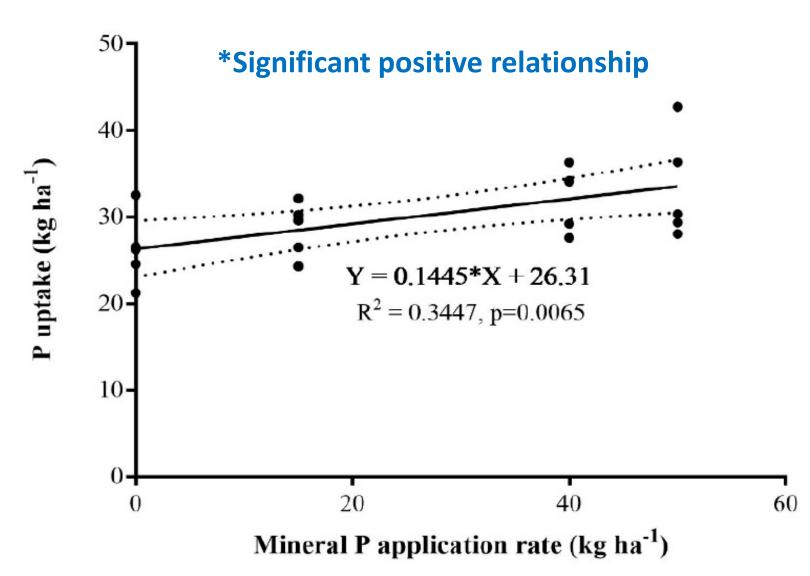
Influence of upstream wastewater and sludge treatment processing on plant available N, an important finding for their appropriate incorporation

All dairy sludge and mineral P treatments produced similar yields and uptake, and crop P was not

Experiment progressing: Field plots and set-up

Randomized Complete Block Design

Plot size Soil: sandy loam textured soil with a soil P test (STP) of 2.8 mg L⁻¹ $6 \times 2 \text{ m}^2$ (P Index 1, i.e. P deficient in the Irish system) ital plots DPS FW ha⁻¹ **P** plots **P** addition P FRV trial plots a kg P ha⁻¹ Treatment tonnes **Replicated Blocks** Ca-P sludge 40 1.6 Al sludge 40 6.8 No P 0 0 SP 15 0 SP 30 0 5 SP 40 0 SP 50 0 SP 60 0

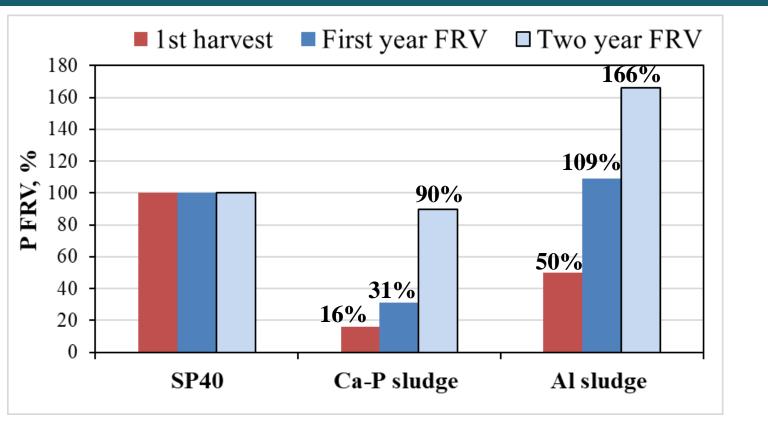


Results: P uptake response

- (suitable for P availability assessment)
- **P** uptake is more sensitive to treatment concentration and biomass yield

***** What is P fertiliser replacement value (P FRV) of dairy sludge products?

Dr. SM Ashekuzzaman Next Generation Dairying Workshop 23rd November 2021



Clear evidence of positive P uptake response with increasing mineral P application rate

differences by taking into account of crop P

<u>P FRV: AI- and Ca-P sludge varied greatly</u>

- Ca-P sludge provided very limited P supply for plant uptake in the first-year but potential for residual P availability
- **Al-sludge demonstrated high P** availability and are promising options to replace mineral P from first-year

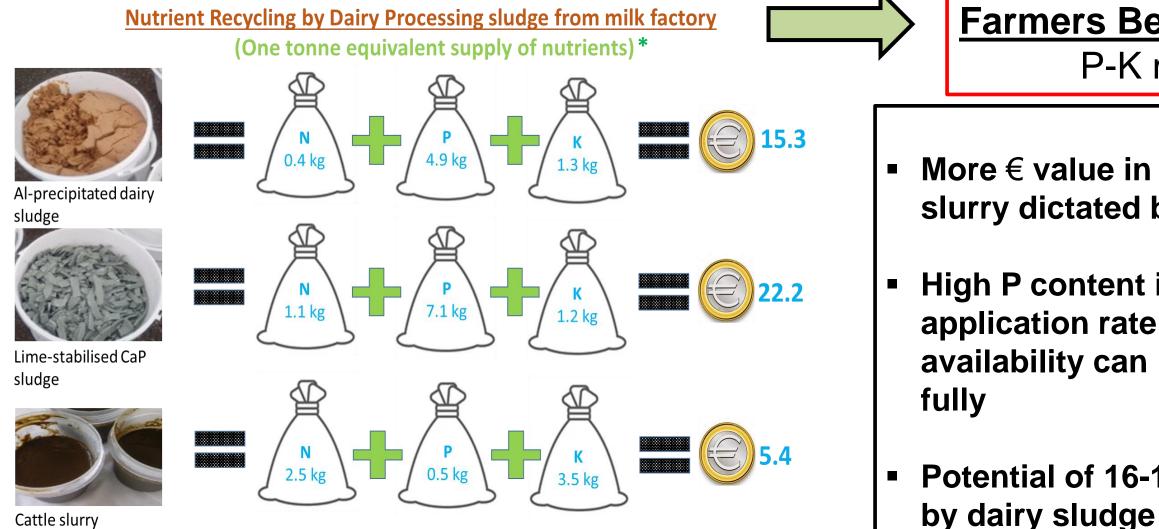
Agronomy 2021, 11, 427. https://doi.org/10.3390/agronomy11030427

Article

Differing Phosphorus Crop Availability of Aluminium and Calcium Precipitated Dairy Processing Sludge Potential Recycled Alternatives to Mineral Phosphorus Fertiliser

S.M. Ashekuzzaman^{1,*}, Owen Fenton¹, Erik Meers² and Patrick J. Forrestal¹

<u>Ca-P sludge has Ca/P = 1.84 and pH 7.7</u> - High **Ca content and Ca/P molar ratio likely to cause** low soluble Ca-P compounds formation



eagase

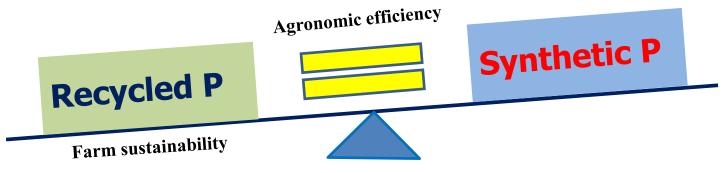
¹ Teagasc, Environment Research Centre, Johnstown Castle, Co., Y35 Y521 Wexford, Ireland; owen.fenton@teagasc.ie (O.F.); patrick.forrestal@teagasc.ie (P.J.F.) ² Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium; Erik.Meers@UGent.be Correspondence: sm.ashekuzzaman@teagasc.ie; Tel.: +353-(0)-53-9171232

$\mathbf{f}_{\mathbf{O}}$

Cattle slurry

*Based on first year N and P availability for grass uptake

Farmers Benefit: Grassland N-P-K maintenance


More € value in dairy sludge than in slurry dictated by high P content

High P content in sludge controls application rate which with high availability can replace chemical P input

Potential of 16-18% fertiliser cost saving

Summary & management implications:

- The fertiliser efficiency of recycled P from <u>Al-sludge</u> is equivalent to synthetic P-fertilisers and as such highly potential to replace mineral P from first-year application.
- **Feedstock composition and the length of the plant growing season need careful** consideration to assess recycled P availability (e.g. Ca-P sludge provided very limited P supply for plant uptake in the first-year but potential for residual P availability) - More study is needed to assess effect on soil P build up through multiple applications per year in a medium-long-term trial.
- Limited land bank and closed period over Winter this opens opportunity to convert dairy sludge as feedstock to produce more viable and refined fertilizer products such as **STRUBIAS** (struvite, biochar and ash) to supply of sufficient recycled P products locally and thereby, reduce dependency on mined and synthetic P-fertilisers.

Acknowledgement

Thanks to all lab/field staffs and involved placement students for the dedicated support on the work done and in-progress.

Funding from EU H2020 Nutri2Cycle project

Project Team: S.M. Ashekuzzaman, Cathal Redmond, Martin Bourke, John B Murphy, Mark Plunkett, Patrick Forrestal (PI)

Nutri2Cvcle

in Europe

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 773682.

