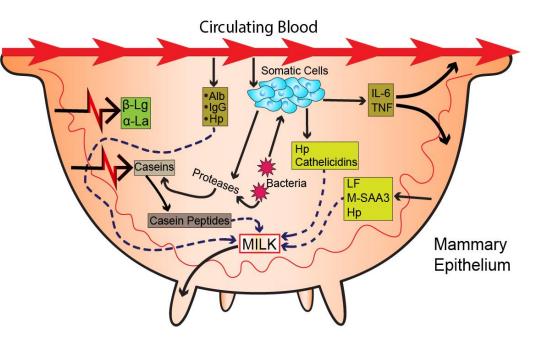

Biomarkers for mastitis diagnostics

- Exploring acute phase proteins (APPs) as biomarkers for selective dry cow therapy
- Biomarkers for differentiating pathogens and directing antimicrobial therapies for clinical mastitis
- What's needed to bridge the gap between what diagnostics are required and what's available?

Emily L. O'Reilly, Lorenzo Viora, Nicola Brady, Francisco Malcata, Andrea Gelemanovic, Theo Pepler, Ruth N. Zadoks & P. David Eckersall


Focus on endogenous biomarkers for mastitis

Targeted approach

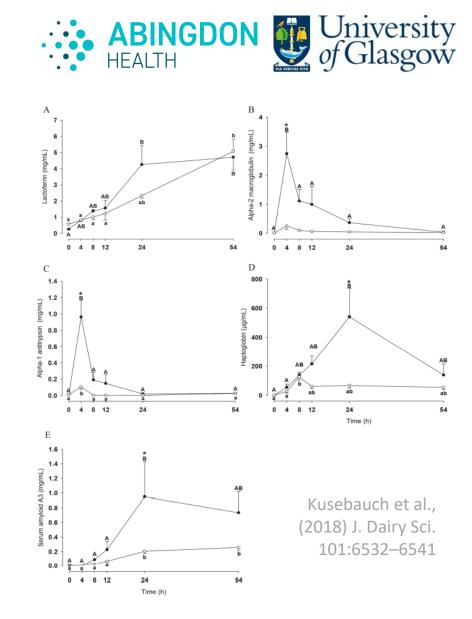
- 1. Focus on known biomarkers for mastitis Acute phase proteins (APPs) for **selective dry cow therapy**
- (a) Focus on known biomarkers for mastitis Acute phase proteins (APPs) for distinguishing pathogens in clinical mastitis

Bottom up proteomic approach

2. (b) Look at *all* differentially abundant proteins between mastitic groups by pathogen to identify biomarker targets for **distinguishing pathogens in clinical mastitis**

Challenges with bacterial culture

- Turn-around time
- Contamination
- Skills
- Cost

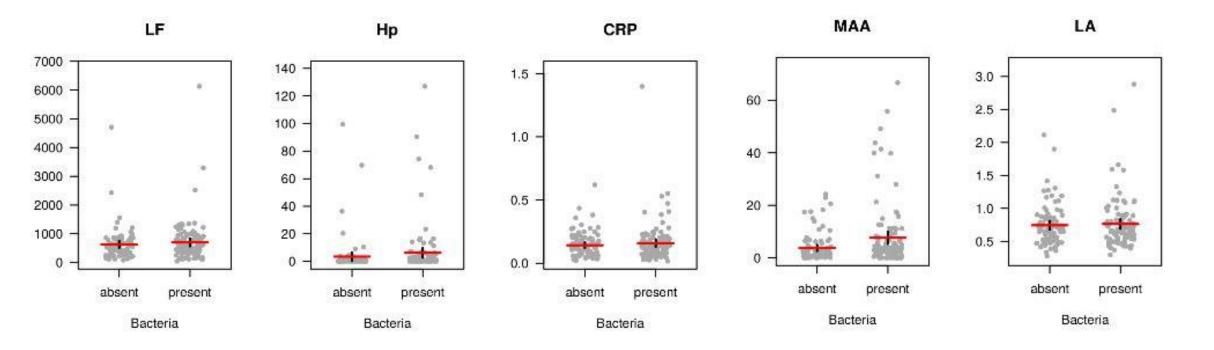


Acute phase proteins

- Experimental studies comparing LPS and PGN (Kusebauch et al., 2018)
- APP concentrations compared with bacteria in clinical mastitis:
 o Pyörälä et al., (2011), Kalmus et al., (2013), Jaeger et al., (2017)
- Mastitomics series (2016): Thomas, *et al.*, 2016 / Mudaliar, *et al.*, 2016.

Innovate UK

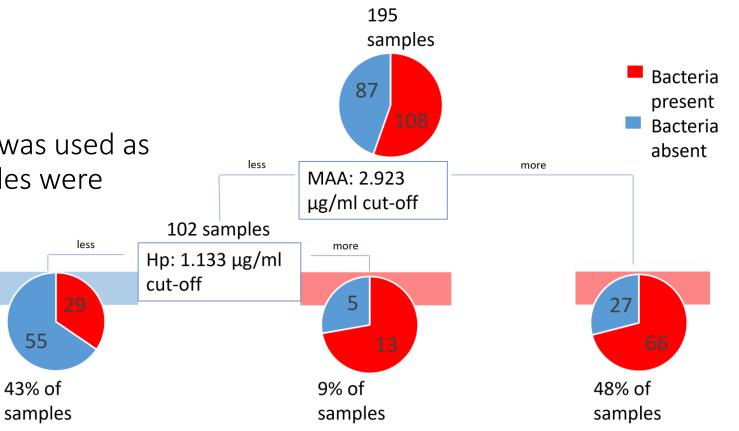
1. Acute phase proteins: Biomarkers for selective dry cow therapy?


Pilot study & large scale targeted study

- Compare APPs with SCC & bacteriology in cows at dry off
- Arrive on farm on day of dry off
- Target cows using CMT and match controls (within cowQ + CMT0 cows)
- 209 targeted quarter milk samples
- Measure APPs (Life Diagnostics Sparcl Immunoassay & ELISA)
- SCC (milk recording)
- Bacteriology: culture + MALDI ToF
- Classification Tree Model (cross-validated)
- Biomarker classification compared to rest utilising McNemar test / bacteriology as gold standard

Haptoglobin (Hp) α-lactalbumin (LA) Lactoferrin (LF) C-reactive protein (CRP) Mammary Amyloid A (MAA)

Distributions of the 5 biomarkers


Haptoglobin (Hp) Mammary associated Serum amyloid A (MAA) C-reactive protein (CRP) α-lactoglobin

Lactotransferrin (LF)

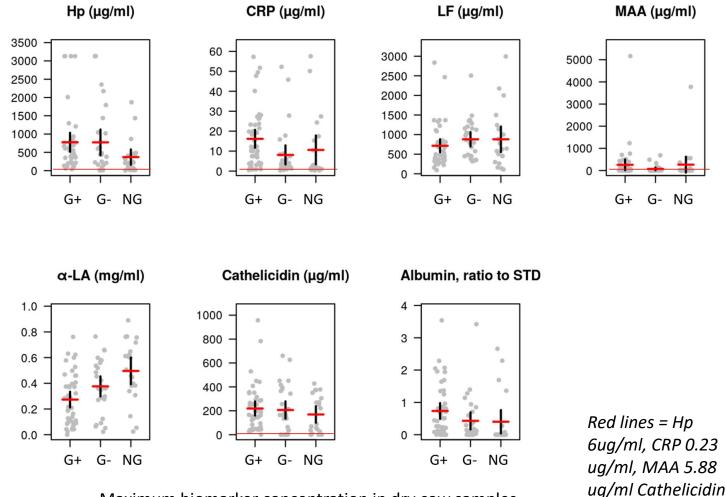
Classification Tree Model (cross-validated)

55

- 5 biomarkers (Hp, LA, LF, CRP, MAA) from the 195 samples were combined using a Classification Tree Model
 - 10-fold Cross Validation (MAA, Hp)
- Bacteriology (presence of bacteria was used as gold standard; contaminated samples were excluded)

Diagnostic performance (195 samples)

	Se	Sp	Accuracy	PPV	NPV
SCC over 199	<mark>79%</mark>	39%	<mark>61%</mark>	<mark>62%</mark>	<mark>60%</mark>
	(70.1; 85.4)	(29.5; 49.6)	(54.0; 67.6)	(53.3; 69.3)	(46.7; 71.4)
CMT over 0	<mark>90%</mark>	25%	<mark>61%</mark>	<mark>60%</mark>	<mark>67%</mark>
	(82.7; 94.2)	(17.3; 35.3)	(54.0; 67.6)	(52.2; 67.1)	(49.6; 80.2)
Biomarker tree	73%	<mark>63%</mark>	<mark>69%</mark>	<mark>71%</mark>	<mark>65%</mark>
(MAA + Hp)	(64.1; 80.6)	(52.7; 72.6)	(61.9; 74.8)	(62.1; 78.8)	(54.8; 74.8)

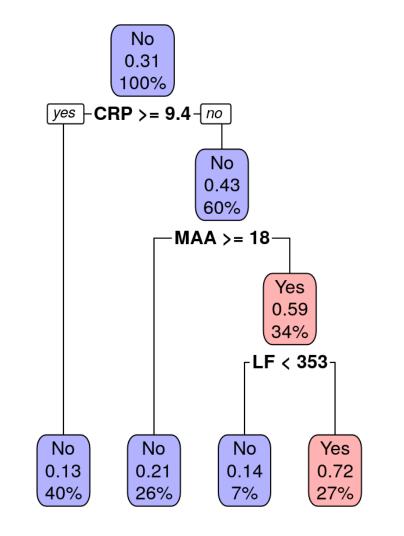

Biomarker decision tree diagnostic performance:

- Specificity higher: fewer animals treated unnecessarily (AM reduction)
- Sensitivity lower: possible welfare concern

2 (a) Biomarkers for **clinical mastitis**: Can APPs be used to differentiate pathogenic cause?

Compare clinically mastitis samples:

- Clinically diagnosed mastitis with associated severity score (1-3)
- Measured the aforementioned APPs plus Alb ratio and cathelicidin
 - Albumin: the overlooked APP, currently doing a lot of work on milk Alb
 - Cathelicidin: underused APP despite significant potential (Addis et al., 2016)
- Compare G+, G- & no growth (NG)

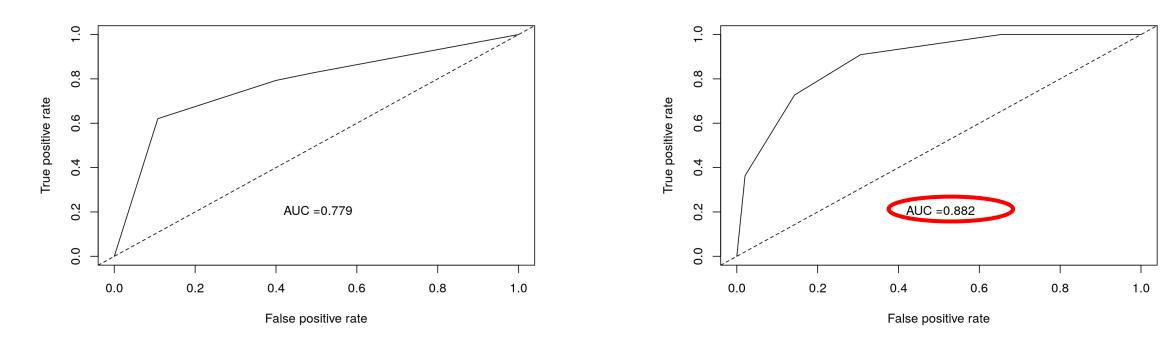

Maximum biomarker concentration in dry cow samples with SCC<200x10³ cells/ml (n=20)

2.11 ug/ml

2 (a) Biomarkers for clinical mastitis*:
 Can APPs be used to differentiate pathogenic cause?

Compare Gram positive with G-/No growth:

- G+ associated with a combination of:
 - low CRP (< 9.4)
 - low MAA (< 18)
 - o high LF (>= 353)
- 62% of the G+ samples had this combination of biomarkers, compared to 11% of the other samples (G- and No growth).

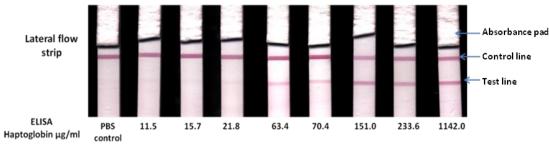

2 (a) Biomarkers for **clinical mastitis**: Can APPs be used to differentiate pathogenic cause?

Gram+ vs. Rest (Gram- and No growth)

Severity 1 & 2 clinical mastitis cases only

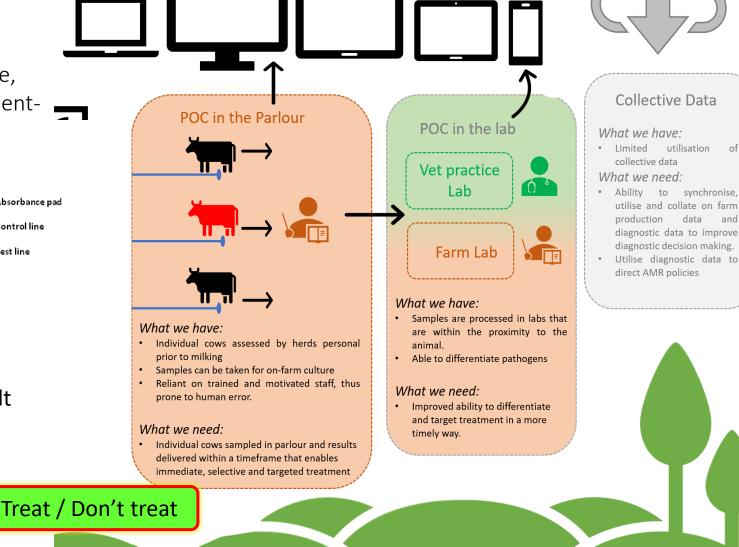
- 2 (a) Biomarkers for clinical mastitis:
- A bottom up approach for differentiating pathogenic cause

Proteomic approach


• Identify all differentially abundant proteins between groups

End point?

Lateral flow


 Fulfils the ASSURED criteria (affordable, sensitive, specific, user-friendly, rapid and robust, equipmentfree and deliverable to end users)

• Multiplex

- Digital interface
 - Quantifiable result
 - Collective data

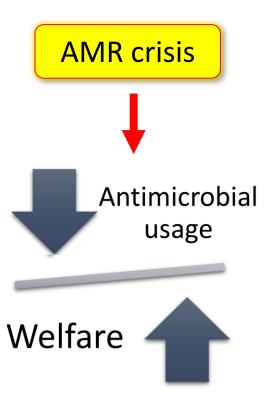
Malcata et al., (2020) Point-of-care tests for bovine clinical mastitis: what do we have and what do we need? J. Dairy Res 87: 60–66.

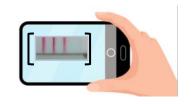
Summary

Exploring acute phase proteins (APPs) as biomarkers for selective dry cow therapy

Number of challenges:

- low concentrations of APPs
- Milk undiluted
- Significant potential


Biomarkers for differentiating pathogens and directing antimicrobial therapies for clinical mastitis


Targeted sampling:

- Exploring cathelicidins further (own Ab)
- Test more samples....

Proteomics:

- Ongoing work to validate the targets of interest
- Test on larger sample set

Acknowledgements

Staff at participating farms

Innovate UK

Abingdon Health

Life Diagnostics

University of Glasgow Veterinary Diagnostic Service

MVLS finance team

School of Veterinary Medicine

University of Glasgow HEALTH

Innovate UK

