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AIM: Can milk biomarkers be used
for early prediction of physiological
imbalance and disease?

Health:

Production:
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Samples in GplusE WP3

• 234 Holstein cows

• 55 of 1st parity

• 66 of 2nd

• 113 of 3+ lactations

• observed 1-50 DIM

• in 6 research herds
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Milk biomarkers/predictors

• Milk metabolites and enzymes (MM)
• 6 metabolites: Glucose 6–Phosphate (Glu6P), Free

Glucose (GluFree), β-hydroxybutyrate (BHB) 
[log10], Isocitric acid (IsoC), Urea, Uric acid (UA)

• 2 enzymes: N-acetyl-β-D-glucosaminidase (NAGase) 
[log10], Lactate dehydrogenase (LDH) [log10]

• MIR spectra for 212 selected wavenumbers1

• IgG glycan profiles (19 peaks)
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1) J. Dairy Sci. 99(6):4816-4825, 
DOI: 10.3168/jds.2015-10477



Metabolic clusters
• By k-means (k=3) of four standardized blood

biomarkers:
• 3 plasma metabolites: Glucose, BHB [log10] and 

Non–Esterified Fatty Acids (NEFA)  [log10]

• 1 serum hormone: Insulin–like Growth Factor-1 
(IGF-1) [log10]

• Within parity (1, 2, 3+) and period (~14, ~35 
DIM)

• ... and within period across parity groups
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Clusters as health groups
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Random forests prediction model
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A few slides included after 
the acknowledgements slide

7/12



Evaluation of performance by 
Leave-One-cow-Out-Cross-Validation

• Accuracy – all 3 clusters
• Accuracy = sum(diagonal)/sum(all)

• Accuracy –imbalanced
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Accuracy of predicting clusters

Par. DIM Overall (95% CI) 3x3

MM
14 0.59 (0.52 - 0.66)

35 0.59 (0.52 - 0.66)

MIR
14 0.54 (0.47 - 0.61)

35 0.49 (0.41 - 0.56)

IgG
14 0.52 (0.43 - 0.61)

35 0.35 (0.27 - 0.44)
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Accuracy for imbalanced group

DIM Overall (95% CI) 3x3 Imbal grp vs rest 2x2

MM
14 0.59 (0.52 - 0.66) 0.75 (0.69 - 0.81)

35 0.59 (0.52 - 0.66) 0.79 (0.73 - 0.85)

MIR
14 0.54 (0.47 - 0.61) 0.81 (0.75 - 0.86)

35 0.49 (0.41 - 0.56) 0.69 (0.62 - 0.76)

IgG
14 0.52 (0.43 - 0.61) 0.72 (0.64 - 0.80)

35 0.35 (0.27 - 0.44) 0.64 (0.55 - 0.72)
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Agreement among biomarkers
DIM14 IgG glycans MIR spectra

MM (N=116) 0.630.720.80 0.620.720.80

MIR (N=120) 0.670.760.83

N=192/186 MIR DIM14 MIR DIM35

MM (DIM14/35) 0.720.780.84 0.590.660.73

DIM35 IgG glycans MIR spectra

MM (N=109) 0.560.660.75 0.630.720.80

MIR (N=110) 0.510.610.70
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Random forests model
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1) Parity was included as predictor in all random forests
models unless restricting to a specific parity group



Random forests algorithm
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Predicting for new data vector
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Tree 1
• For each tree

• apply decision rules on the 
new set of measures

• using threshold at each split
• obtain the predicted status



... by majority voting
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