

www.gpluse.eu

Genotype plus Environment Integration for a more sustainable dairy production system

Random forests prediction of blood metabolic clusters of dairy cows: comparing three types of milk biomarkers

Leslie Foldager Department of Animal Science Bioinformatics Research Centre Aarhus University, Denmark

<u>AIM:</u> Can milk biomarkers be used for early prediction of physiological imbalance and disease?

lon of the second

10 TOTO

Health:

Production:

inition of the second

Citicol

2° duce d

Samples in GplusE WP3

- 234 Holstein cows
- 55 of 1st parity
- 66 of 2nd
- 113 of 3+ lactations
- observed 1-50 DIM
- in 6 research herds

Milk biomarkers/predictors

- Milk metabolites and enzymes (MM)
 - 6 metabolites: Glucose 6–Phosphate (Glu6P), Free Glucose (GluFree), β-hydroxybutyrate (BHB) [log₁₀], Isocitric acid (IsoC), Urea, Uric acid (UA)
 - 2 enzymes: N-acetyl- β -D-glucosaminidase (NAGase) [log₁₀], Lactate dehydrogenase (LDH) [log₁₀]
- MIR spectra for 212 selected wavenumbers¹
- IgG glycan profiles (19 peaks)

1) J. Dairy Sci. 99(6):4816-4825, DOI: 10.3168/jds.2015-10477

Metabolic clusters

- By k-means (k=3) of four standardized blood biomarkers:
 - 3 plasma metabolites: **Glucose**, **BHB** [log₁₀] and Non–Esterified Fatty Acids (**NEFA**) [log₁₀]
 - 1 serum hormone: Insulin–like Growth Factor-1 (IGF-1) [log₁₀]
- Within parity (1, 2, 3+) and period (~14, ~35 DIM)
- ... and within period across parity groups

Clusters as health groups

Random forests prediction model

A few slides included after the acknowledgements slide

Evaluation of performance by Leave-One-cow-Out-Cross-Validation

Accuracy of predicting clusters

Par.	DIM	Overall (95% CI) 3x3			Ref	erer	nce
MM	14	0.59 (0.52 - 0.66)			1	2	3
	35	0.59 (0.52 - 0.66)	c	1	20	12	17
MIR	14	0.54 (0.47 - 0.61)	tio	–		13	17
	35	0.49 (0.41 - 0.56)	edic	2	21	67	16
lgG	14	0.52 (0.43 - 0.61)	Pre	3	12	7	19
	35	0.35 (0.27 - 0.44)					

Accuracy for imbalanced group

	DIM	Overa	II (95% CI) 3	3x3	Imbal grp vs rest 2x2
	14	0.59 (0.52 - 0.66)			0.75 (0.69 - 0.81)
	35	0.5	Refere	nce	0.79 (0.73 - 0.85)
MIR	14	0.5	1+2	3	0.81 (0.75 - 0.86)
	35		39+13+21	17+16	0.69 (0.62 - 0.76)
	14	1+ 2	+67 =140	= 33	0.72 (0.64 - 0.80)
Igu	35		12+7= 19	19	0.64 (0.55 - 0.72)
3.11					10/12

Agreement among biomarkers

DIM14	IgG glycans	MIR spectra		
MM (N=116)	_{0.63} 0.72 _{0.80}	_{0.62} 0.72 _{0.80}		
MIR (N=120)	_{0.67} 0.76 _{0.83}			
DIM35	IgG glycans	MIR spectra		
MM (N=109)	_{0.56} 0.66 _{0.75}	_{0.63} 0.72 _{0.80}		
MIR (N=110)	_{0.51} 0.61 _{0.70}			
N=192/186	MIR DIM14	MIR DIM35		
MM (DIM14/35)	_{0.72} 0.78 _{0.84}	_{0.59} 0.66 _{0.73}		

www.gpluse.eu

Acknowledgments and Disclaimer

- T. Larsen et al.: lab analyses of milk and blood samples
- M. Bjerring: information from databases
- M. Hostens, M. Salavati, C. Grelet: collaboration on statistical analysis and data
- K.L. Ingvartsen, M.T. Sorensen: discussion and interpretation
- GplusE Consortium: all the other contributors to the study

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 613689

The views expressed in this publication are the sole responsibility of the author(s) and do not necessarily reflect the views of the European Commission.

The presenting author acknowledges the support (reimbursement) from the DairyCare network.

Random forests model¹

Random forests algorithm

Predicting for new data vector

- For each tree
 - apply decision rules on the new set of measures
 - using threshold at each split
- obtain the predicted status

