

Rumination Detection in Dairy Cattle Using Acceleration Based Bolus Sensors

Centre for Intelligent Dynamic Communications, University of Strathclyde

Andrew Hamilton, Chris Davison, Ivan Andonovic, Craig Michie

20th March 2018 DairyCare, CERTH, Thessaloniki

Our Background

- CIDCOM is a research group at the University of Strathclyde within the Department for Electronic and Electrical Engineering
- Strong focus on industrially focussed projects related to sensors, edge computing, data analytics and machine learning
- Several current projects in the area of dairy cows (welfare, milk optimisation, and tracking)

Reticulorumen Activity Monitoring

- Movement of bolus based sensors for detecting temperature/pH may provide insight into animal health in a similar manner to collar based sensors
- Combination of movement and temperature in single package is desirable
- First stage was to see what rumen activity looked like and then aim to develop a model related to behaviour

Bolus Sensor

Sensors used local storage for data and was retrieved from the bolus after experimental period

Sensors were inserted into and retrieved from the cows via a cannula to the rumen

Bolus Sensor

Raw Acceleration Data

3 axes acceleration with range of +/- 1 g X,Y, Z – red, blue, green, respectively

Bolus would occasionally have very low data likely due to movement between reticulum and rumen

Resolution to Activity

Raw Acceleration (3 axes) - [fist1 on 2017-04-04]

2 stage filter was used to create measure of mean variance of the combined X,Y and Z accelerations

Filter was based on the sampling frequency and was optimised to remove low level peaks through zero-crossing thresholds

Detection of Peak Strength and Time Between Peaks

Relationship to Behaviour

Time between peaks and the amplitude of each peak indicated distinct regions

Clustering Analysis

Each cow data set was broken into 24 hour periods

The mean peak amplitude and time between peak over 5 min segments was used to generate cluster plots

K-Means analysis with silhouette to verify optimal cluster #

2 clusters proved most stable with successive analysis

Area if interest is the bottom cluster that seemed to correlate with rumination period of 40-50s

Verification with Collar Data

- Cows that were instrumented with bolus sensors and collars were used to verify model
- These collars used a 3 state classification of eating, rumination and other
- Dairy cows will spend approximately 1/3 in each state

Conclusions

- Derivation of a 2 state model of the reticulorumen with 1 cluster strongly correlated with rumination
- Cluster contains other movement that is not rumination, requires further analysis to discriminate further (principle component analysis, etc)
- Sensor design requires refinement to reduce incidence of movement between reticulum and rumen

