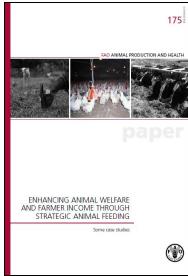
Using Omics to Understand Seasonal Weight Loss in Dairy Goats: An overview of Project GOATOMICS major achievements

André Martinho de Almeida

aalmeida@isa.ulisboa.pt


Thessaloniki, Greece

(2018)

Introduction

- Seasonal weight loss poses a serious limitation to animal production in Tropical and Mediterranean areas
- Due to poor quality of pastures in the dry season, animals may loose up to 30 % of their initial body weight – constraint to ruminant production sectors with special relevance to ruminant extensive production
- In contrast, rainy season pastures are usually considered of adequate quality and availability
- To control Seasonal Weight Loss, supplementation is often implemented during dry season – Unavailable in undeveloped countries and Expensive in developed countries

The Canary islands, Spain...

Dairy goats and the Canary Islands (Spain)

common ancestry

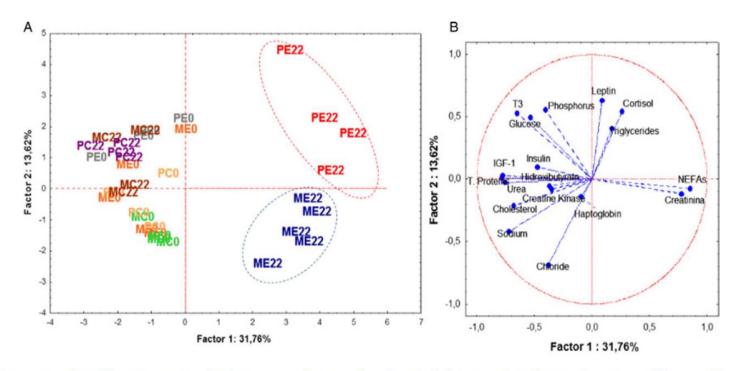
- adapted to rainy climate
- low tolerance to pasture

scarcity

Majorera Breed

- adapted to arid climate
- high tolerance to pasture

scarcity


REGULAR ARTICLES

Body live weight and milk production parameters in the *Majorera* and *Palmera* goat breeds from the Canary Islands: influence of weight loss

Joana R. Lérias · Lorenzo E. Hernández-Castellano · Antonio Morales-delaNuez · Susana S. Araújo · Noemí Castro · Anastasio Argüello · Juan Capote · André M. Almeida

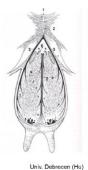
Establishment of the biochemical and endocrine blood profiles in the *Majorera* and *Palmera* dairy goat breeds: the effect of feed restriction

Joana R Lérias^{1,2}, Raquel Peña³, Lorenzo E Hernández-Castellano^{4,5}, Juan Capote⁶, Noemí Castro⁴, Anastasio Argüello⁴, Susana S Araújo^{1,7,8}, Yolanda Saco³, Anna Bassols³ and André M Almeida^{1,2,7}^{†*}

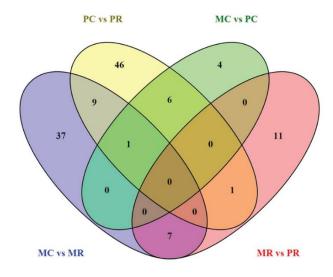
Fig. 1. PCA scatterplot of the *Majorera* and *Palmera* animals (control and underfed) at 0 and 22 d (A) and position of the variables projected in the plane as determined by the first two principal axes (B) (45·38% of the % explained variance). MC0 – *Majorera* Control, day 0; MC22 – *Majorera* control at day 22, ME0 – *Majorera* Underfed at day 0, ME22 – *Majorera* Underfed at day 22; PC0 – *Palmera* Control, day 0; PC22 – *Palmera* control at day 22, PE0 – *Palmera* Underfed at day 0 and PE22 – *Palmera* Underfed at day 22.

Experimental Design

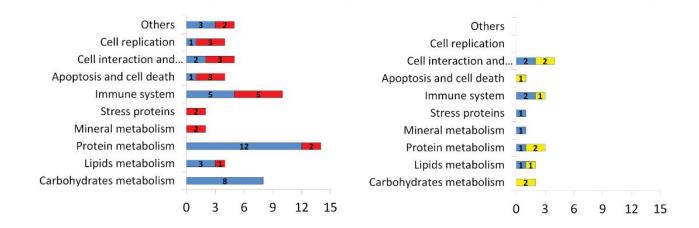
Goats in lactation Two breeds: Palmera(P) and Majorera(M) Palmera: susceptible to weight loss Majorera: tolerant to weight loss Two groups per breed: Control(C) vs Underfed(E) **Underfed**: 15% weight loss in 22 days; 80% decrease milk production **Control**: slight increase in BW and same level of milk production



Metabolomics - NMR

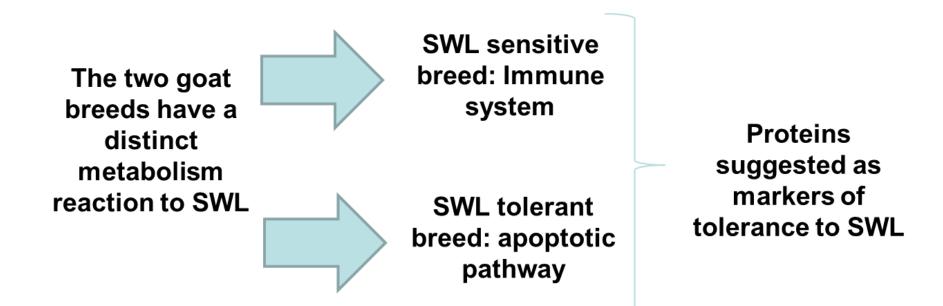


Mammary Gland Biopsy


Label free Proteomics, NGS Transcriptomics & NMR Metabolomics Analysis

Proteomics - Major Findings

- First Characterization of the goat mammary gland proteome → over 1000 proteins identified
- Goat entries and sheep and cattle homologues
- 96 proteins had differential expression (fold change > 1.98 and P<0.05)
 - PC vs PE: 63 proteins
 - MC vs ME: 54 proteins
 - MC vs PC: 11 proteins
 - ME vs PE: 19 proteins
- Breed and Nutritional treatment affect significantly the mammary gland secretory tissue proteome



Major Findings

Proteomics: Conclusions

Mammary Gland: metabolite profiling (mmol/g tissue)

Amino Acids Metabolism

	Majorera	Palmera
alanine	1.0 x10 ⁻³ (±1.9x10 ⁻⁴)	9.2 x10 ⁻⁴ (±4.9x10 ⁻⁴)
aspartate	8.2 x10 ⁻⁴ (± 4.1x10 ⁻⁴)	8.8 x10 ⁻⁴ (± 3.7x10 ⁻⁴)
creatine	2.2 x10 ⁻³ (± 5.3x10 ⁻⁴)	1.9 x10⁻³ (± 5.9x10⁻⁴)
glutamate	7.2 x10 ⁻³ (± 1.8x10 ⁻³)	6.3 x10⁻ (± 2.9x10⁻³)
glutathione	8.0 x10 ⁻⁴ (± 3.2x10 ⁻⁴)	8.6 x10 ⁻⁴ (± 3.7x10 ⁻⁴)
glycine	3.2 x10 ⁻³ (± 1.2x10 ⁻³)	5.0 x10 ⁻³ (± 3.0x10 ⁻³)
inosine	6.8 x10 ⁻⁴ (± 2.0x10 ⁻⁴)	5.3 x10 ⁻⁴ (± 1.5x10 ⁻⁴)
taurine	3.2 x10 ⁻³ (± 1.4x10 ⁻³)	1.8 x10 ⁻³ (± 1.0x10 ⁻³)
3-methylhistidine	1.6 x10 ⁻⁴ (± 4.3x10 ⁻⁵)	1.7 x10⁻⁴ (± 6.7x10⁻⁵)
adenosylhomocysteine	7.4 x10 ⁻⁵ (± 3.2x10 ⁻⁵)	1.1 x10⁻⁴ (± 8.6x10⁻⁵)
anserine	1.6 x10 ⁻⁴ (± 3.7x10 ⁻⁵)	1.9 x10 ⁻⁴ (± 7.1x10 ⁻⁵)
benzoate	7.7 x10 ⁻⁵ (± 4.7x10 ⁻⁵)	6.7 x10⁻⁵ (± 5.5x10⁻⁵)
carnosine	1.6 x10 ⁻⁴ (± 4.7x10 ⁻⁵)	1.1 x10⁻⁴ (± 4.4x10⁻⁵)
creatine phospphate	2.0 x10 ⁻⁴ (± 1.9x10 ⁻⁴)	1.0 x10⁻⁴ (± 3.6x10⁻⁵)
creatinine	6.4 x10 ⁻⁵ (± 1.1x10 ⁻⁵)	3.0 x10⁻⁵ (± 1.8x10⁻⁵)
isoleucine	1.7 x10 ⁻⁴ (± 3.2x10 ⁻⁵)	1.3 x10⁻⁴ (± 4.3x10⁻⁵)
leucine	3.1 x10 ⁻⁴ (± 5.1x10 ⁻⁵)	2.6 x10⁻⁴ (± 8.8x10⁻⁵)
phenylalanine	1.1 x10 ⁻⁴ (± 3.9x10 ⁻⁵)	9.0 x10⁻⁵ (± 2.6x10⁻⁵)
tyrosine	1.4 x10 ⁻⁴ (± 2.2x10 ⁻⁵)	1.1 x10⁻⁴ (± 4.2x10⁻⁵)
valine	2.8 x10 ⁻⁴ (± 3.9x10 ⁻⁵)	2.5 x10⁻⁴ (± 6.7x10⁻⁵)

Carbohydrates Metabolism

	Majorera	Palmera
glucose	3.8 x10⁻³ (± 1.5x10⁻³)	3.4 x10 ⁻³ (± 1.2x10 ⁻³)
lactase	3.9 x10⁻³ (± 8.6x10⁻⁴)	4.2 x10 ⁻³ (± 2.2x10 ⁻³)
lactose	2.5 x10 ⁻² (± 1.0x10 ⁻²)	2.3 x10 ⁻² (± 1.5x10 ⁻²)
UDP-glucose	2.8 x10 ⁻⁴ (± 8.5x10 ⁻⁵)	2.5 x10 ⁻⁴ (± 9.0x10 ⁻⁵)

Energy Metabolism

	Majorera	Palmera
AMP	1.1 x10 ⁻³ (± 6.1x10 ⁻⁴)	9.5 x10⁻⁴ (± 4.5x10⁻⁴)
IMP	1.5 x10 ⁻⁴ (± 6.2x10 ⁻⁵)	1.7 x10 ⁻⁴ (± 1.0x10 ⁻⁴)
NAD+	8.4 x10⁻⁵ (± 7.9x10⁻⁵)	5.9 x10⁻⁵ (± 3.2x10⁻⁵)
ATP/ADP	7.5 x10⁻⁵ (± 4.6x10⁻⁵)	1.1 x10 ⁻⁴ (± 6.1x10 ⁻⁵)
NADP+	4.2 x10 ⁻⁵ (± 1.4x10 ⁻⁵)	3.2 x10 ⁻⁵ (± 1.1x10 ⁻⁵)

Cofactors and Vitamins Metabolism

	Majorera	Palmera
betaine	2.4 x10 ⁻³ (± 1.2x10 ⁻³)	1.3 x10 ⁻³ (± 9.7x10 ⁻⁴)
carnitine	6.8 x10 ⁻⁴ (± 1.2x10 ⁻⁴)	4.9 x10 ⁻⁴ (± 1.8x10 ⁻⁴)
choline	9.9 x10 ⁻⁴ (± 1.2x10 ⁻⁴)	7.4 x10 ⁻⁴ (± 2.6x10 ⁻⁴)
glycerophosphocholine	1.6 x10 ⁻³ (± 5.5x10 ⁻⁴)	2.5 x10 ⁻³ (± 1.3x10 ⁻³)
myo-inositol	1.5 x10 ⁻³ (± 5.5x10 ⁻⁴)	1.6 x10 ⁻³ (± 6.2x10 ⁻⁴)
phosphocholine	1.2 x10 ⁻³ (± 5.7x10 ⁻⁴)	1.1 x10 ⁻³ (± 3.7x10 ⁻⁴)
acetyl-L-cartinite	1.1 x10 ⁻⁴ (± 5.3x10 ⁻⁵)	1.1 x10 ⁻⁴ (± 3.7x10 ⁻⁵)
methylmalonate	5.9 x10 ⁻⁵ (± 7.3x10 ⁻⁵)	5.7 x10 ⁻⁵ (± 6.8x10 ⁻⁵)
nicotinurate	2.5 x10 ⁻⁴ (± 1.6x10 ⁻⁴)	1.8 x10 ⁻⁴ (± 5.3x10 ⁻⁵)

Nucleotide Metabolism

	Majorera	Palmera
adenine	3.1 x10 ⁻⁴ (± 4.2x10 ⁻⁴)	1.9 x10 ⁻⁴ (± 1.2x10 ⁻⁴)
uridine	1.5 x10 ⁻⁴ (± 1.0x10 ⁻⁴)	1.2 x10 ⁻⁴ (± 2.7x10 ⁻⁵)
xanthine	1.5 x10 ⁻⁴ (± 6.0x10 ⁻⁵)	1.3 x10 ⁻⁴ (± 6.2x10 ⁻⁵)

TCA Cycle

	Majorera	Palmera
acetate	1.4 x10⁻⁴ (± 3.9x10⁻⁵)	2.3 x10 ⁻⁴ (± 1.1x10 ⁻⁴)
formate	7.6 x10 ⁻⁴ (± 8.9x10 ⁻⁴)	8.2 x10 ⁻⁴ (± 7.2x10 ⁻⁴)
fumarate	1.3 x10 ⁻⁴ (± 3.5x10 ⁻⁵)	1.1 x10 ⁻⁴ (± 5.4x10 ⁻⁵)
citrate	1.1 x10 ⁻⁴ (± 7.2x10 ⁻⁵)	2.0 x10 ⁻⁴ (± 2.6x10 ⁻⁴)
pyruvate	2.0 x10 ⁻⁴ (± 8.1x10 ⁻⁵)	1.6 x10 ⁻⁴ (± 1.3x10 ⁻⁴)
succinate	1.5 x10 ⁻⁴ (± 7.5x10 ⁻⁵)	2.0 x10 ⁻⁴ (± 1.0x10 ⁻⁴)

47 metabolites:

all common constituents of mammary gland and meat

Mammary Gland: metabolite profiling (mmol/g tissue)

Amino Acids Metabolism

	Majorera	Palmera
alanine	1.0 x10 ⁻³ (±1.9x10 ⁻⁴)	9.2 x10 ⁻⁴ (±4.9x10 ⁻⁴)
aspartate	8.2 x10 ⁻⁴ (± 4.1x10 ⁻⁴)	8.8 x10 ⁻⁴ (± 3.7x10 ⁻⁴)
creatine	2.2 x10⁻³ (± 5.3x10⁻⁴)	1.9 x10 ⁻³ (± 5.9x10 ⁻⁴)
glutamate	7.2 x10 ⁻³ (± 1.8x10 ⁻³)	6.3 x10⁻ (± 2.9x10⁻³)
glutathione	8.0 x10 ⁻⁴ (± 3.2x10 ⁻⁴)	8.6 x10 ⁻⁴ (± 3.7x10 ⁻⁴)
glycine	3.2 x10 ⁻³ (± 1.2x10 ⁻³)	5.0 x10 ⁻³ (± 3.0x10 ⁻³)
inosine	6.8 x10 ⁻⁴ (± 2.0x10 ⁻⁴)	5.3 x10 ⁻⁴ (± 1.5x10 ⁻⁴)
taurine	3.2 x10 ⁻³ (± 1.4x10 ⁻³)	1.8 x10 ⁻³ (± 1.0x10 ⁻³)
3-methylhistidine	1.6 x10 ⁻⁴ (± 4.3x10 ⁻⁵)	1.7 x10 ⁻⁴ (± 6.7x10 ⁻⁵)
adenosylhomocysteine	7.4 x10 ⁻⁵ (± 3.2x10 ⁻⁵)	1.1 x10 ⁻⁴ (± 8.6x10 ⁻⁵)
anserine	1.6 x10 ⁻⁴ (± 3.7x10 ⁻⁵)	1.9 x10 ⁻⁴ (± 7.1x10 ⁻⁵)
benzoate	7.7 x10⁻⁵ (± 4.7x10⁻⁵)	6.7 x10 ⁻⁵ (± 5.5x10 ⁻⁵)
carnosine	1.6 x10 ⁻⁴ (± 4.7x10 ⁻⁵)	1.1 x10 ⁻⁴ (± 4.4x10 ⁻⁵)
creatine phospphate	2.0 x10 ⁻⁴ (± 1.9x10 ⁻⁴)	1.0 x10 ⁻⁴ (± 3.6x10 ⁻⁵)
creatinine	6.4 x10⁻⁵ (± 1.1x10⁻⁵)	3.0 x10 ⁻⁵ (± 1.8x10 ⁻⁵)
isoleucine	1.7 x10 ⁻⁴ (± 3.2x10 ⁻⁵)	1.3 x10 ⁻⁴ (± 4.3x10 ⁻⁵)
leucine	3.1 x10 ⁻⁴ (± 5.1x10 ⁻⁵)	2.6 x10 ⁻⁴ (± 8.8x10 ⁻⁵)
phenylalanine	1.1 x10 ⁻⁴ (± 3.9x10 ⁻⁵)	9.0 x10 ⁻⁵ (± 2.6x10 ⁻⁵)
tyrosine	1.4 x10 ⁻⁴ (± 2.2x10 ⁻⁵)	1.1 x10 ⁻⁴ (± 4.2x10 ⁻⁵)
valine	2.8 x10 ⁻⁴ (± 3.9x10 ⁻⁵)	2.5 x10 ⁻⁴ (± 6.7x10 ⁻⁵)

Carbohydrates Metabolism

	Majorera	Palmera
glucose	3.8 x10⁻³ (± 1.5x10⁻³)	3.4 x10 ⁻³ (± 1.2x10 ⁻³)
lactase	3.9 x10⁻³ (± 8.6x10⁻⁴)	4.2 x10 ⁻³ (± 2.2x10 ⁻³)
lactose	2.5 x10 ⁻² (± 1.0x10 ⁻²)	2.3 x10 ⁻² (± 1.5x10 ⁻²)
UDP-glucose	2.8 x10 ⁻⁴ (± 8.5x10 ⁻⁵)	2.5 x10 ⁻⁴ (± 9.0x10 ⁻⁵)

Energy Metabolism

	Majorera	Palmera
AMP	1.1 x10 ⁻³ (± 6.1x10 ⁻⁴)	9.5 x10⁻⁴ (± 4.5x10⁻⁴)
IMP	1.5 x10⁻⁴ (± 6.2x10⁻⁵)	1.7 x10 ⁻⁴ (± 1.0x10 ⁻⁴)
NAD+	8.4 x10⁻⁵ (± 7.9x10⁻⁵)	5.9 x10⁻⁵ (± 3.2x10⁻⁵)
ATP/ADP	7.5 x10⁻⁵ (± 4.6x10⁻⁵)	1.1 x10 ⁻⁴ (± 6.1x10 ⁻⁵)
NADP+	4.2 x10 ⁻⁵ (± 1.4x10 ⁻⁵)	3.2 x10 ⁻⁵ (± 1.1x10 ⁻⁵)

Cofactors and Vitamins Metabolism

	Majorera	Palmera
betaine	2.4 x10 ⁻³ (± 1.2x10 ⁻³)	1.3 x10 ⁻³ (± 9.7x10 ⁻⁴)
carnitine	6.8 x10 ⁻⁴ (± 1.2x10 ⁻⁴)	4.9 x10 ⁻⁴ (± 1.8x10 ⁻⁴)
choline	9.9 x10 ⁻⁴ (± 1.2x10 ⁻⁴)	7.4 x10 ⁻⁴ (± 2.6x10 ⁻⁴)
glycerophosphocholine	1.6 x10 ⁻³ (± 5.5x10 ⁻⁴)	2.5 x10⁻³ (± 1.3x10⁻³)
myo-inositol	1.5 x10 ⁻³ (± 5.5x10 ⁻⁴)	1.6 x10 ⁻³ (± 6.2x10 ⁻⁴)
phosphocholine	1.2 x10 ⁻³ (± 5.7x10 ⁻⁴)	1.1 x10 ⁻³ (± 3.7x10 ⁻⁴)
acetyl-L-cartinite	1.1 x10 ⁻⁴ (± 5.3x10 ⁻⁵)	1.1 x10 ⁻⁴ (± 3.7x10 ⁻⁵)
methylmalonate	5.9 x10 ⁻⁵ (± 7.3x10 ⁻⁵)	5.7 x10 ⁻⁵ (± 6.8x10 ⁻⁵)
nicotinurate	2.5 x10 ⁻⁴ (± 1.6x10 ⁻⁴)	1.8 x10 ⁻⁴ (± 5.3x10 ⁻⁵)

Nucleotide Metabolism

	Majorera	Palmera
adenine	3.1 x10 ⁻⁴ (± 4.2x10 ⁻⁴)	1.9 x10 ⁻⁴ (± 1.2x10 ⁻⁴)
uridine	1.5 x10 ⁻⁴ (± 1.0x10 ⁻⁴)	1.2 x10 ⁻⁴ (± 2.7x10 ⁻⁵)
xanthine	1.5 x10 ⁻⁴ (± 6.0x10 ⁻⁵)	1.3 x10 ⁻⁴ (± 6.2x10 ⁻⁵)

TCA Cycle

	Majorera	Palmera
acetate	1.4 x10 ⁻⁴ (± 3.9x10 ⁻⁵)	2.3 x10 ⁻⁴ (± 1.1x10 ⁻⁴)
formate	7.6 x10 ⁻⁴ (± 8.9x10 ⁻⁴)	8.2 x10 ⁻⁴ (± 7.2x10 ⁻⁴)
fumarate	1.3 x10 ⁻⁴ (± 3.5x10 ⁻⁵)	1.1 x10 ⁻⁴ (± 5.4x10 ⁻⁵)
citrate	1.1 x10 ⁻⁴ (± 7.2x10 ⁻⁵)	2.0 x10 ⁻⁴ (± 2.6x10 ⁻⁴)
pyruvate	2.0 x10 ⁻⁴ (± 8.1x10 ⁻⁵)	1.6 x10 ⁻⁴ (± 1.3x10 ⁻⁴)
succinate	1.5 x10 ⁻⁴ (± 7.5x10 ⁻⁵)	2.0 x10 ⁻⁴ (± 1.0x10 ⁻⁴)

Lactose

~2x10⁻² mmol/g tissue

Mammary Gland: metabolite profiling (mmol/g tissue)

Amino Acids Metabolism

	Majorera	Palmera
alanine	1.0 x10 ⁻³ (±1.9x10 ⁻⁴)	9.2 x10 ⁻⁴ (±4.9x10 ⁻⁴)
aspartate	8.2 x10 ⁻⁴ (± 4.1x10 ⁻⁴)	8.8 x10 ⁻⁴ (± 3.7x10 ⁻⁴)
creatine	2.2 x10⁻³ (± 5.3x10⁻⁴)	1.9 x10⁻³ (± 5.9x10⁻⁴)
glutamate	7.2 x10 ⁻³ (± 1.8x10 ⁻³)	6.3 x10 ⁻ (± 2.9x10 ⁻³)
glutathione	8.0 x10 ⁻⁴ (± 3.2x10 ⁻⁴)	8.6 x10 ⁻⁴ (± 3.7x10 ⁻⁴)
glycine	3.2 x10 ⁻³ (± 1.2x10 ⁻³)	5.0 x10 ⁻³ (± 3.0x10 ⁻³)
inosine	6.8 x10 ⁻⁴ (± 2.0x10 ⁻⁴)	5.3 x10 ⁻⁴ (± 1.5x10 ⁻⁴)
taurine	3.2 x10 ⁻³ (± 1.4x10 ⁻³)	1.8 x10 ⁻³ (± 1.0x10 ⁻³)
3-methylhistidine	1.6 x10 ⁻⁴ (± 4.3x10 ⁻⁵)	1.7 x10⁻⁴ (± 6.7x10⁻⁵)
adenosylhomocysteine	7.4 x10 ⁻⁵ (± 3.2x10 ⁻⁵)	1.1 x10 ⁻⁴ (± 8.6x10 ⁻⁵)
anserine	1.6 x10 ⁻⁴ (± 3.7x10 ⁻⁵)	1.9 x10⁻⁴ (± 7.1x10⁻⁵)
benzoate	7.7 x10⁻⁵ (± 4.7x10⁻⁵)	6.7 x10⁻⁵ (± 5.5x10⁻⁵)
carnosine	1.6 x10 ⁻⁴ (± 4.7x10 ⁻⁵)	1.1 x10⁻⁴ (± 4.4x10⁻⁵)
creatine phospphate	2.0 x10 ⁻⁴ (± 1.9x10 ⁻⁴)	1.0 x10⁻⁴ (± 3.6x10⁻⁵)
creatinine	6.4 x10⁻⁵ (± 1.1x10⁻⁵)	3.0 x10⁻⁵ (± 1.8x10⁻⁵)
isoleucine	1.7 x10 ⁻⁴ (± 3.2x10 ⁻⁵)	1.3 x10⁻⁴ (± 4.3x10⁻⁵)
leucine	3.1 x10 ⁻⁴ (± 5.1x10 ⁻⁵)	2.6 x10⁻⁴ (± 8.8x10⁻⁵)
phenylalanine	1.1 x10 ⁻⁴ (± 3.9x10 ⁻⁵)	9.0 x10⁻⁵ (± 2.6x10⁻⁵)
tyrosine	1.4 x10 ⁻⁴ (± 2.2x10 ⁻⁵)	1.1 x10⁻⁴ (± 4.2x10⁻⁵)
valine	2.8 x10 ⁻⁴ (± 3.9x10 ⁻⁵)	2.5 x10⁻⁴ (± 6.7x10⁻⁵)

Carbohydrates Metabolism

	Majorera	Palmera
glucose	3.8 x10⁻³ (± 1.5x10⁻³)	3.4 x10 ⁻³ (± 1.2x10 ⁻³)
lactase	3.9 x10⁻³ (± 8.6x10⁻⁴)	4.2 x10 ⁻³ (± 2.2x10 ⁻³)
lactose	2.5 x10 ⁻² (± 1.0x10 ⁻²)	2.3 x10 ⁻² (± 1.5x10 ⁻²)
UDP-glucose	2.8 x10 ⁻⁴ (± 8.5x10 ⁻⁵)	2.5 x10 ⁻⁴ (± 9.0x10 ⁻⁵)

Energy Metabolism

	Majorera	Palmera
AMP	1.1 x10 ⁻³ (± 6.1x10 ⁻⁴)	9.5 x10 ⁻⁴ (± 4.5x10 ⁻⁴)
IMP	1.5 x10 ⁻⁴ (± 6.2x10 ⁻⁵)	1.7 x10 ⁻⁴ (± 1.0x10 ⁻⁴)
NAD+	8.4 x10⁻⁵ (± 7.9x10⁻⁵)	5.9 x10 ⁻⁵ (± 3.2x10 ⁻⁵)
ATP/ADP	7.5 x10⁻⁵ (± 4.6x10⁻⁵)	1.1 x10 ⁻⁴ (± 6.1x10 ⁻⁵)
NADP+	4.2 x10⁻⁵ (± 1.4x10⁻⁵)	3.2 x10 ⁻⁵ (± 1.1x10 ⁻⁵)

Cofactors and Vitamins Metabolism

	Majorera	Palmera
betaine	2.4 x10 ⁻³ (± 1.2x10 ⁻³)	1.3 x10 ⁻³ (± 9.7x10 ⁻⁴)
carnitine	6.8 x10 ⁻⁴ (± 1.2x10 ⁻⁴)	4.9 x10 ⁻⁴ (± 1.8x10 ⁻⁴)
choline	9.9 x10 ⁻⁴ (± 1.2x10 ⁻⁴)	7.4 x10 ⁻⁴ (± 2.6x10 ⁻⁴)
glycerophosphocholine	1.6 x10 ⁻³ (± 5.5x10 ⁻⁴)	2.5 x10⁻³ (± 1.3x10⁻³)
myo-inositol	1.5 x10 ⁻³ (± 5.5x10 ⁻⁴)	1.6 x10⁻³ (± 6.2x10⁻⁴)
phosphocholine	1.2 x10 ⁻³ (± 5.7x10 ⁻⁴)	1.1 x10 ⁻³ (± 3.7x10 ⁻⁴)
acetyl-L-cartinite	1.1 x10 ⁻⁴ (± 5.3x10 ⁻⁵)	1.1 x10 ⁻⁴ (± 3.7x10 ⁻⁵)
methylmalonate	5.9 x10 ⁻⁵ (± 7.3x10 ⁻⁵)	5.7 x10⁻⁵ (± 6.8x10⁻⁵)
nicotinurate	2.5 x10 ⁻⁴ (± 1.6x10 ⁻⁴)	1.8 x10 ⁻⁴ (± 5.3x10 ⁻⁵)

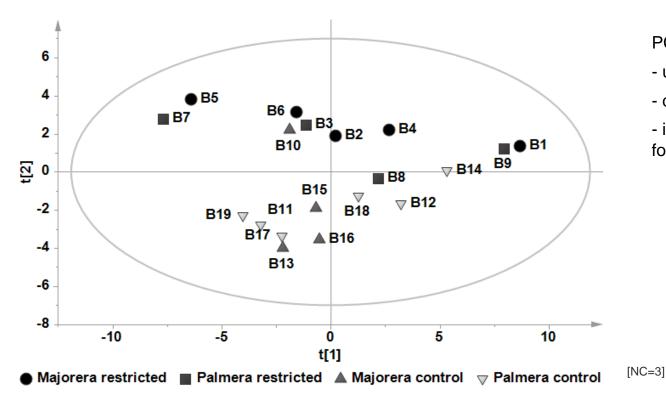
Nucleotide Metabolism

	Majorera	Palmera
adenine	3.1 x10 ⁻⁴ (± 4.2x10 ⁻⁴)	1.9 x10 ⁻⁴ (± 1.2x10 ⁻⁴)
uridine	1.5 x10 ⁻⁴ (± 1.0x10 ⁻⁴)	1.2 x10 ⁻⁴ (± 2.7x10 ⁻⁵)
xanthine	1.5 x10 ⁻⁴ (± 6.0x10 ⁻⁵)	1.3 x10 ⁻⁴ (± 6.2x10 ⁻⁵)

TCA Cycle

	Majorera	Palmera
acetate	1.4 x10 ⁻⁴ (± 3.9x10 ⁻⁵)	2.3 x10 ⁻⁴ (± 1.1x10 ⁻⁴)
formate	7.6 x10 ⁻⁴ (± 8.9x10 ⁻⁴)	8.2 x10 ⁻⁴ (± 7.2x10 ⁻⁴)
fumarate	1.3 x10 ⁻⁴ (± 3.5x10 ⁻⁵)	1.1 x10 ⁻⁴ (± 5.4x10 ⁻⁵)
citrate	1.1 x10 ⁻⁴ (± 7.2x10 ⁻⁵)	2.0 x10 ⁻⁴ (± 2.6x10 ⁻⁴)
pyruvate	2.0 x10 ⁻⁴ (± 8.1x10 ⁻⁵)	1.6 x10 ⁻⁴ (± 1.3x10 ⁻⁴)
succinate	1.5 x10 ⁻⁴ (± 7.5x10 ⁻⁵)	2.0 x10 ⁻⁴ (± 1.0x10 ⁻⁴)

Lactose


~2x10⁻² mmol/g tissue

NADP+

~4x10⁻⁵ mmol/g tissue

Mammary Gland: multivariate analysis

Principal Component Analysis (PCA)

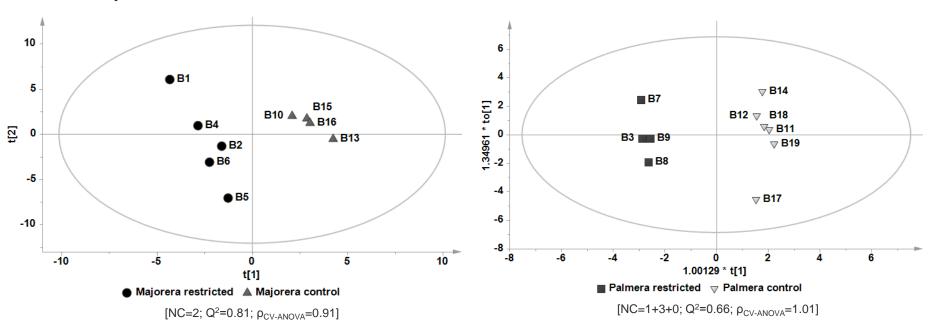
PCA:

- unsupervised analysis

- cluster the samples (scores)

- identify metabolites responsible for the group clustering (loadings)

• PCA is not capable of separating the 4 groups.


Mammary Gland: multivariate analysis

Partial Least Squares Discriminant Analysis (PLS) &

Orthogonal Partial Least Squares Discriminant Analysis (OPLS)

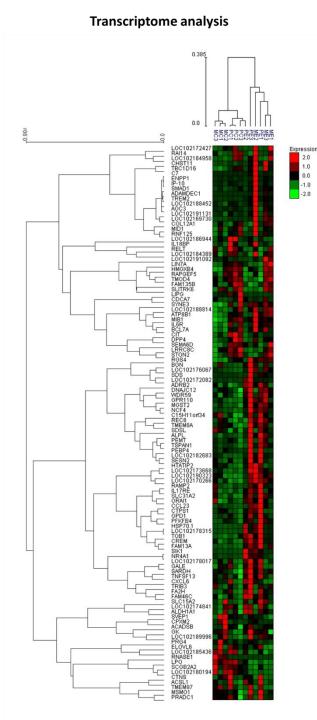
PLS Majorera breed

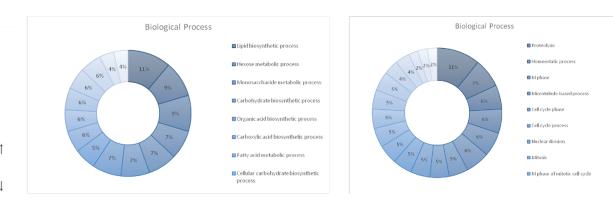
OPLS Palmera breed

 PLS/OPLS analysis was necessary to differentiate between control and restricted groups.

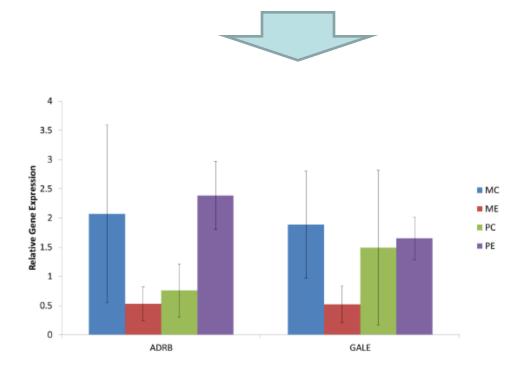
- PLS / OPLS:
- supervised analysis
- evaluate repeated variables between groups
- highlight differences between groups

Metabolomics: Conclusions


Majorera breed


Palmera breed

Acetate *


IMPPhosphocholine

- Variations are consistent
- between breeds
- Differences could be related to:
 metabolism adaptation to the low-energy diet
 microflora composition *
- IMP
- · ATP/ADP/AMP
- Phosphocholine

Reprograming of genes expression occurs as result of the stress imposed, irrespective to the breed studied

Validation of expression profiles through Real time quantitative PCR

Transcriptomics Analysis: Major Conclusions

- Reprograming of gene expression as a result of the stress imposed
- Different behavior of both breeds in response to SWL
- Numerous Biological processes affected in both breeds (Proteolysis, Fatty Acid Synthesis, etc.)
- Release of new genomic resources and shed light into the genes and regulatory networks underlying milk production under nutritional stress

Ricardo et al. (in preparation)

The goat (*Capra hircus*) mammary gland secretory tissue proteome as influenced by weight loss: A study using label free proteomics

CrossMark

Lorenzo E. Hernández-Castellano ^a, Ana M. Ferreira ^{b,c}, Paolo Nanni ^d, Jonas Grossmann ^d, Anastasio Argüello ^e, Juan Capote ^f, Guohong Cai ^g, John Lippolis ^g, Noemí Castro ^e, Andre M. de Almeida ^{b,h,i,*}

Molecular BioSystems

PAPER

Cite this: *Mol. BioSyst.*, 2016, 12, 2094

NMR-metabolomics profiling of mammary gland secretory tissue and milk serum in two goat breeds with different levels of tolerance to seasonal weight loss⁺

Mariana Palma,^a Lorenzo E. Hernández-Castellano,^b Noemí Castro,^c Anastasio Arguëllo,^c Juan Capote,^d Manolis Matzapetakis‡^a and André Martinho de Almeida‡§*^{aef}

Acknowledgements

ITQB/UNL & IBET (Portugal)

<u>José Salvado</u> <u>Mariana Palma</u> <u>Ana F</u>Joana Lerias <u>erreira</u> <u>Manolis Matzapetakis</u> Susana Araujo

Un. Barcelona (Spain) UNB

Anna Bassols Raquel Pato

CIIMAR (Portugal) *Graziano Cugno* Alexandre Campos

Functional Genomics Center Zurich (Switzerland) Paolo Nanni Jonas Grossman Claudia Fortes

ICIA & ULPGC (Spain) Juan Capote

Universität

Zürich

Lorenzo Hernandez-Castellano

Antonio Morales Noemi Castro Tacho Arguello

Gobierno de Canarias Instituto Canario de Investigaciones Agrarias

USDA (Ames, IA, USA) John Lippolis Guonh-Hong Cai

- PhD Grant SFRH/BD/85391/2012
- Project PTDC/CVT/116499/2010

