

Current and future prospects for the automatic recording and control of ruminant foraging on farms

Dr Mark Rutter

National Centre for Precision Farming

Harper Adams University

Outline

- Measuring ruminant foraging behaviour
 - Current on-farm foraging related PLF
 - Where are the gaps?
 - What technologies might fill the gaps?
- Controlling ruminant foraging behaviour
 - Grazing management
 - Facilitating diet selection

Precision Livestock Farming

- Livestock production has been intensified to help us control production (at the group level)
- Precision livestock farming (PLF) is changing this:
 - Gather data from individual animals so we can then manage them as individuals
 - Much closer monitoring and control
 - Increased use of robotics
 - Greatest initial uptake is in the dairy sector

Precision farming

Control diagram adapted from Banhazi, 2011

Jaw movement recorder

The development of a noseband sensor allowed the opening and closing of the jaws to be recorded 20Hz (<2MB per day)

 This formed the basis of the 'IGER Behaviour **Recorder'** and **Graze** analysis software

Cattle grazing jaw movements

Rumination jaw movements

- RumiWatch (ITIN+HOCH GmbH) combines a jaw movement sensor with a leg-mounted pedometer
- Oil-filled tube, pressure sensor and accelerometer (10hz)
- Device processes the data
- Summarizes eating, ruminating and drinking
- "Automatic health monitoring"

RumiWatch

Accelerometers everywhere!

- The development of cheap triple-axis accelerometers is revolutionizing the capture of animal behaviour data
- Includes human behaviour:
 - Nintendo Wii Remote (games)
 - Smart phones (e.g. VR apps)
 - Smart watches (fitness)

Leg-mounted accelerometers

- Leg-mounted accelerometers are used in several commercial systems
- Used in on-farm oestrus detection and health monitoring
- Record activity, steps, lying and standing behaviour
- e.g. IceRobotics IceQube
- Based on their earlier IceTag which was a research tool

Accelerometer-based foraging recording – ear tags

Harper Adams University

- SmartBow Eartag
- Rumination and cow location
- SensOor (Agis Automatisering)

Behaviours classified based on ear movement

Behaviour	Kappa	Concordance
Ruminating	0.85	0.93
Eating	0.77	0.75
Resting	0.86	0.97
Active	0.47	0.35

SensOor

Accelerometer-based foraging recording – neck mounted

- FeedPhone (Medria)
 - Collar mounted sensor
 - Eating time and rumination time

Delagarde and Lemonnier, 2015. Proc. EGF Wageningen

On-farm feed intake?

- Feed intake recording systems based on feed bins on load cells
- Insentec RIC bins used by researchers
- Grow Safe system is used on some genetic evaluation farms, it is still too expensive for 'ordinary' farms

Intake from accelerometers?

- Oudshorn et al. (2013) investigated the use of accelerometers to measure grazing time
- Combined this with <u>manually</u> <u>recorded</u> bite counts to estimate herbage intake
- IGER Jaw Movement recorder can discriminate bites vs chews, but it not practical for on-farm use
- Is there an alternative?

Bioacoustics

Microphone → Radio transmitter → Radio receiver

connected to video camera i.e. the sound you will hear in the video is transmitted from the cows head

Noseband -> 'IGER' Behaviour Recorder

Bioacoustics

Chews

Head up

Jaw sensor vs bioacoustics

Jaw sensor vs bioacoustics

- Although the jaw sensor misclassified some chews as bites...
- ...there was broad correspondence in the classification of jaw movement between the two
- Microphones are more robust than the noseband sensor so better suited to use on farms

Bioacoustics potential

- Originally needed the human ear to detect bites and chews, but algorithms have been developed to do this automatically
- Research has shown the energy density of chewing sound is proportional to bite mass, so has the potential to monitor intake
- Has the potential to detect different plant species and differences in herbage quality

SCR VocalTag

- Bioacoustics are already being used in an onfarm monitoring system
- The SCR 'VocalTag' uses bioacoustics to detect rumination behaviour
- Used to monitor health and help predict oestrus

SCR VocalTag

Commercial bioacoustics

 Comparison of rumination collars (R) with the IGER Behaviour Recorder (I) showed variable results i.e. collars need to be correctly fitted

Rutter et al. 2011 Proc. ISAE Indianapolis

A bioacoustic problem

- The microphone can pick up the sound of conspecifics grazing alongside the subject...
- ...so may need to be combined with other sensors e.g. accelerometers

Microphone or accelerometer?

- Japanese researchers (pers. comm.) are using head mounted triple-axis accelerometers to determine bites vs chews
- Is a microphone just a single-axis accelerometer mounted to a diaphragm?
- Can an accelerometer held against the skull give the same information as 'bioacoustics' if the sampling frequency is high enough?

Controlling pasture access

 Technology is also available to help automate controlled access to grass:

Electronic gates

Timed release gates

Robotic fences

Current strip grazing

- Measure herbage mass (e.g. plate meter) then set an electric fence to offer just enough grass to last to e.g. the next milking
- This is quite difficult, and it is easy to under- or over-estimate and give too little or too much grass
- Is there a technological solution?

Rising plate meter

Herbage availability

Few . Many

bites chews

Low herbage availability

Many. Few

bites chews

Automated strip grazing

 Set up several strip paddocks, each with a remote release gate

- Monitor grazing behaviour, including bites:chews ratios and possibly bite mass using bioacoustics
- Once the optimal residual sward height is achieved the system opens the gate to the next paddock
- This can happen at any time, not just after the cows have been milked
- Can be 'smart' e.g. does not give fresh grass just before the animals are due to be milked

Diet preference studies

- Diet selection and preference studied in sheep and cattle grazing adjacent monocultures of ryegrass and white clover
- Partial preference for clover, typically 70% clover and 30% grass
- Higher proportion of clover in diet of lactating animals

Diurnal pattern of preference

Evolutionary basis?

- Optimal microbial protein synthesis in vitro with 70% clover 30% grass
- Current theory suggests a balance between four evolutionary drivers:
 - animals are trying to optimize their own efficiency of nutrient capture
 - to maintain rumen function
 - to avoid eating high levels of plant toxins
 - to minimise the risk of predation

TMRs prevent diet selection

- Total Mixed Ration's thwart the ability of animals to:
 - Select the diet that they want
 - Optimize their own efficiency of nutrient capture
- This is bad because:
 - It is inefficient, wasting feed and creating pollution
 - It is a welfare problem as the animal is frustrated
- So why do we use TMRs?
 - Domestic ruminants evolved in an environment where 'concentrate' feed was rare so it made sense to eat as much as you could

A technological solution?

- One possible solution is to give the animals two feeds:
 - Grass silage based and clover silage based?
 - A protein-rich TMR and an energy-rich TMR?
- Multiple diets facilitated by robotic feed systems
- Let the animals select their own diet from the two
- They might still occasionally make nutritionally 'unwise' choices (too much of one feed = acidosis)
 - Possibly guard against this by controlling access to the feeds (via auto-gates) combined with rumen pH monitoring

Conclusions

- Technology is already starting to have a big impact in intensively managed dairy systems
- Although still needing further R&D, bioacoustics (combined with accelerometry) appears to offer the greatest potential for monitoring variables relevant to the on-farm measurement of eating behaviour
- Precision approaches should improve the ease and efficiency of grazing management
- Technology could help facilitate diet selection and so improve nutrient use efficiency and animal welfare

Any questions?

Dr Mark Rutter smrutter@harper-adams.ac.uk

National Centre for Precision Farming

Harper Adams
University