

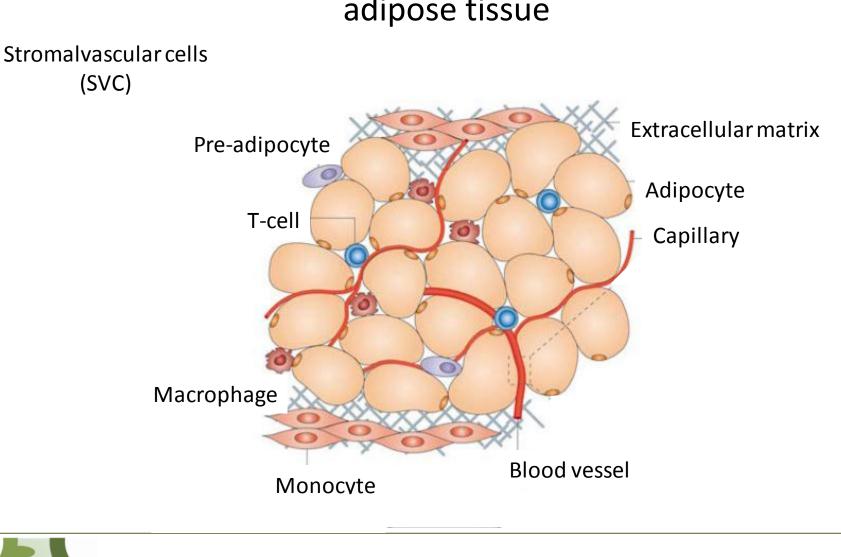
The relevance of adipokines as biomarkers for metabolic health in dairy cows

Helga Sauerwein

Institute for Animal Science, Physiology & Hygiene Unit, University of Bonn, Germany

Outline

- Adipokines and adipose tissue: definition, general basics, functions
- Metabolic health: Transition cow problems
- Specific adipokines during the transition period: adiponectin, apelin, leptin, resistin
- Critical assessment of the applicability as biomarkers



Adipokines: messenger molecules from adipose tissue

adipose tissue

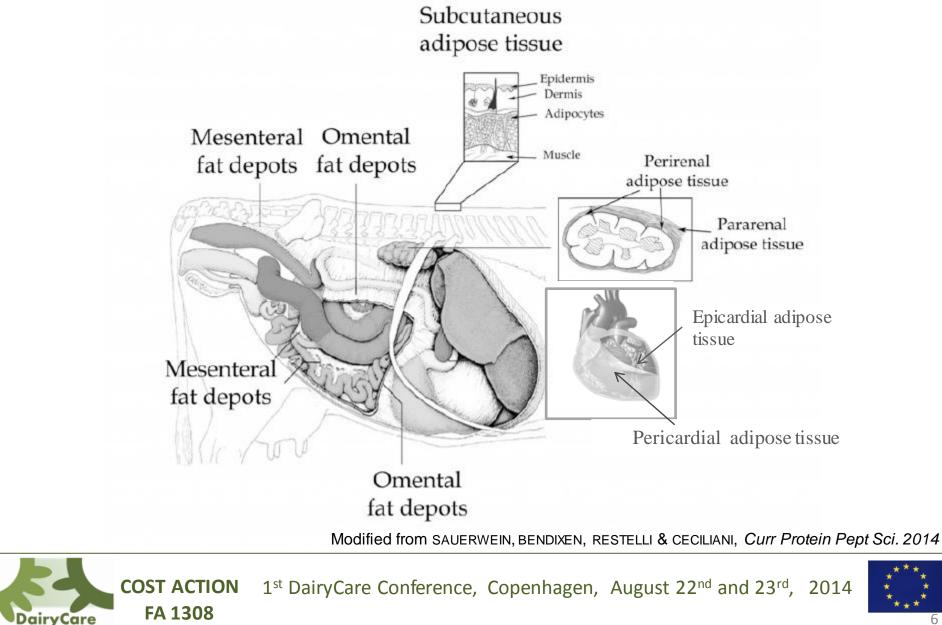
COST ACTION 1st DairyCare Conference, Copenhagen, August 22nd and 23rd, 2014 FA 1308 DairyCare

Adipokines with metabolic effects

Pro-inflammatory and antiinflammatory adipokines and acute phase proteins

Pro-mitotic and pro-angiogenetic adipokines

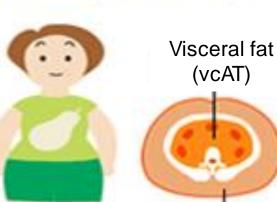
Modified from TILG & MOSCHEN (2006) and DENG & SCHERER (2010)


Adipose tissue, subcutaneous and visceral locations

land-

fakultät

wirtschaftliche


Different fat depots contribute differently to metabolism: Subcutaneous vs. visceral fat

Apple shaped obesity

Visceral fat (vcAT)

Subcutaneous fat (scAT)

vcAT vcAT

vcAT

vcAT

Pear shaped obesity

Subcutaneous fat (scAT)

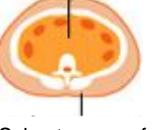
(vcAT)

A concern also for dairy cows?

Capacity to form adipocytes:	scAT >
Vascularity:	scAT >
Metabolic activity:	scAT <
Inflammation, cytokine production:	scAT <

DairyCare

1st DairyCare Conference, Copenhagen, August 22nd and 23rd, 2014 **COST ACTION** FA 1308


Different fat depots contribute differently to metabolism: Subcutaneous vs. visceral fat

Apple shaped obesity

Pear shaped obesity

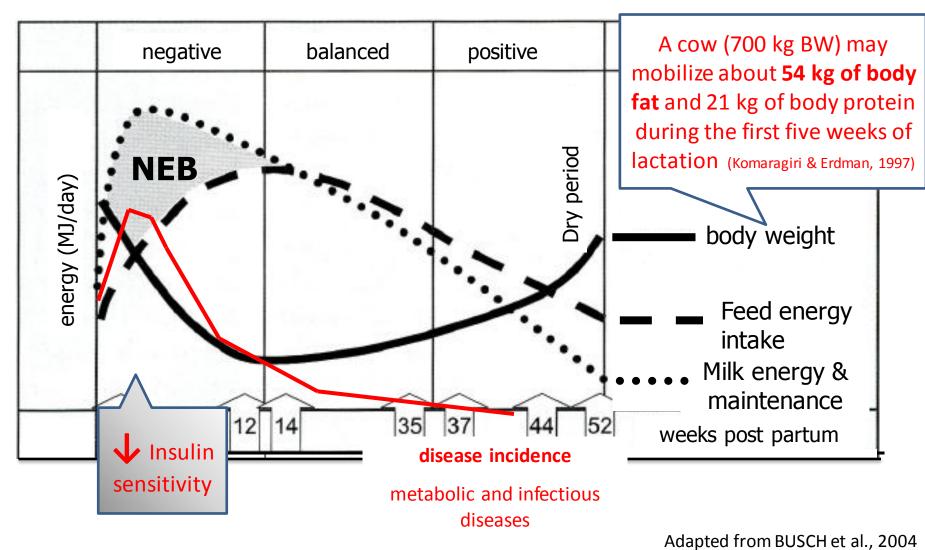
Visceral fat (vcAT)

Subcutaneous fat (scAT)

Subcutaneous fat (scAT)

A concern also for dairy cows ?

Capacity to form adipocytes:scVascularity:scMetabolic activity:scInflammation, cytokine production:sc


scAT > vcAT scAT > vcAT scAT < vcAT scAT < vcAT

COST ACTION 1st DairyCare Conference, Copenhagen, August 22nd and 23rd, 2014 **FA 1308**

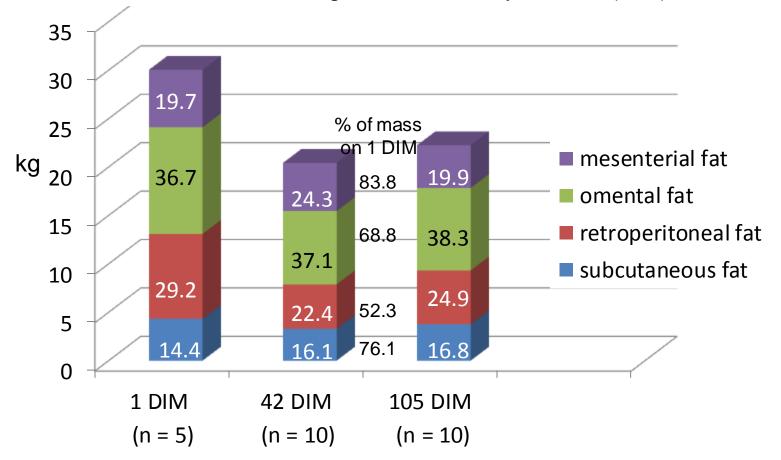
Iandwirtschaftliche Energy status throughout lactation

DairyCare

COST ACTION 1st DairyCare Conference, Copenhagen, August 22nd and 23rd, 2014 **FA 1308**

universitätbonn

Visceral adiposity in dairy cows?


land-

fakultät

wirtschaftliche

Changes of fat depot mass in primiparous cows during the first 105 days in milk (DIM)

Modified from AKTER ET AL., 2011 J. Dairy Sci. 95:2871.

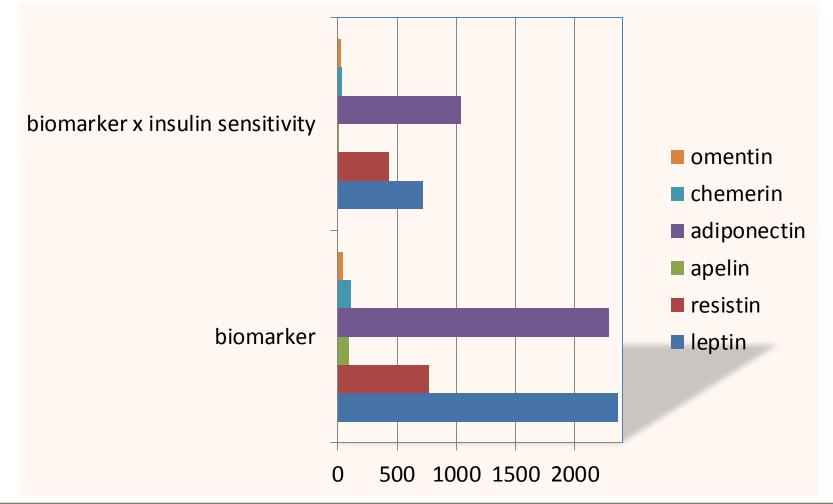
The main metabolic changes during the transition period:

- Lipolysis (and ketogenesis)
- reduced insulin secretion
- reduced insulin sensitivity

Adipokines particularly related to these metabolic changes:

- concerning changes in fat mass and size: **probably all**
- concerning insulin sensitivity: Adiponectin, leptin, and others...
- Concerning inflammation typical for the peripartal period: inflammatory cytokines*,§, Acute Phase Proteins§

* May interfere in insulin signalling [§] are not exclusively adipokines but are secreted from many other tissues (same for IGF-1)



PubMed- search results (hits) for various adipokines combined with "biomarker" or "biomarker and insulin sensitivity"

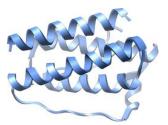
COST ACTION 1st DairyCare Conference, Copenhagen, August 22nd and 23rd, 2014 **FA 1308**

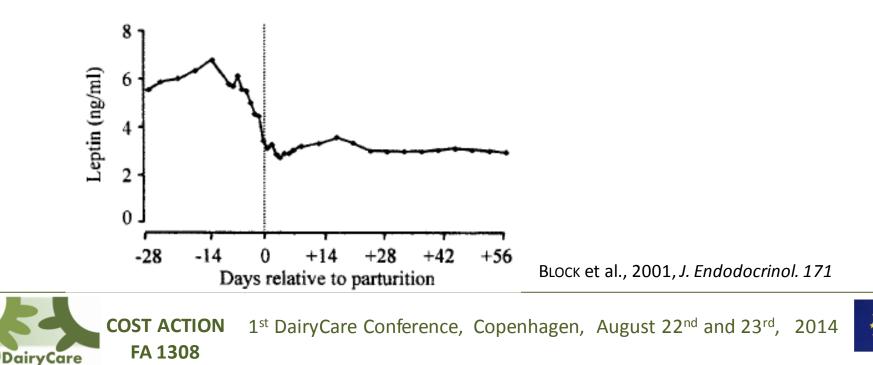
Analytical accessibility of **bovine** adipokines <u>at the level of the</u> <u>protein</u>

(criteria of validity published in peer reviewed journals):

• Leptin: RIA: DELAVAUD et al. 2000, ERHARDT et al., 2001; ELISA: SAUERWEIN et al., 2004

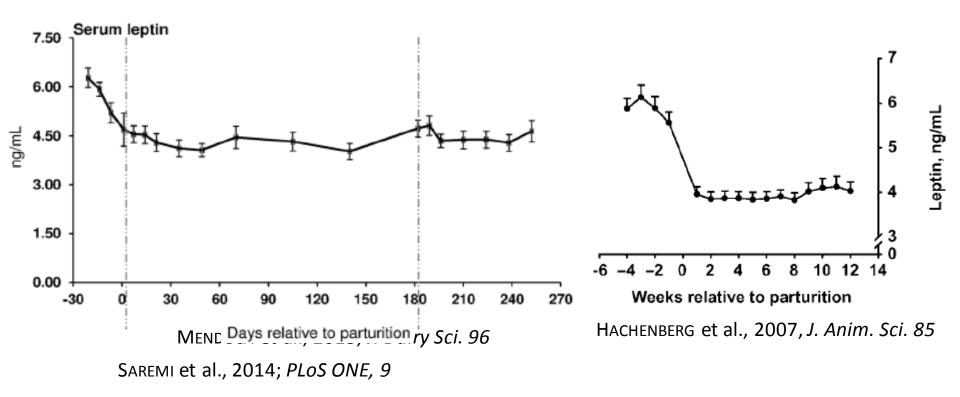
- Resistin: ELISA (distributed by Euromedex, France; supplier: USCNLife, only CV data for validity)
- Apelin: ELISA for bioactive fragment ,100 % species homologue (Phoenix Pharmaceuticals, USA)
- Adiponectin: ELISA: MIELENZ et al., 2013




Structure: 18 kDa protein, 167 amino acids similar to proinflammatory helical cytokines (e.g. IL-2, IL-6)

Leptin

Circulating concentrations : <u>positively</u> correlated with body fat content range commonly observed in dairy cows ~ 2 – 8 ng/mL


Physiological changes of the circulating concentrations during the transition period

Physiological changes of the circulating concentrations during the transition period

- Leptin as biomarker for metabolic health?

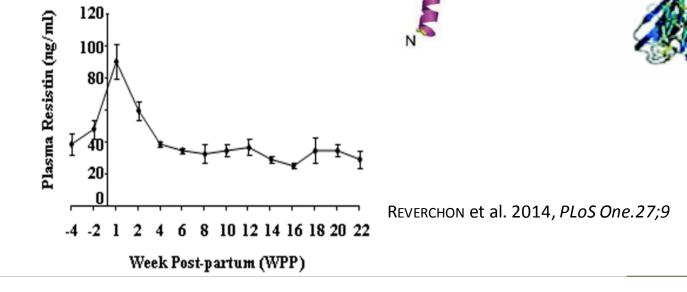
Criterion of classification (time relative to parturition),	Time-courses of variables found affected ³					ted ³
and groups (threshold): group size (n) ¹	t^2	e^2	Variable	P-value	ok	ltd
BCS (1 to 2 wk AP) ⁴	+++	0	Leptin	0.007	\downarrow	Ŷ
BCS-ltd (≥3.5): 6						
BCS-ok (<3.5): 25			.		•	
Δ BCS (2 wk AP to wk 4 PP) ⁴	-	1	Leptin	0.017	T	
ΔBCS -ltd (≥ 0.5): 8			IGF-I	0.001	T	Ŷ
ΔBCS-ok (<0.5): 23			NUTLA	0.001		*
β -hydroxybutyrate (wk 2 PP)	+	1	NEFA	0.001	\downarrow	I.
BHB-ltd (≥1,200 m <i>M</i>): 14 BHB ch (≤1,200 m <i>M</i>): 24						
BHB-ok (<1,200 mM): 24		1	NEFA	< 0.001		^
NEFA (wk 1 PP)	++	1			↓ ↑	
NEFA-ltd (≥0.5 m <i>M</i>): 17 NEFA-ok (<0.5 m <i>M</i>): 21			IGF-I	< 0.001	1	\checkmark
IGF-I (wk 1 PP)	++	1	IGF-I	< 0.001	↑	1
IGF-I (wk I I I) IGF-I-ltd (<39 ng/mL): 19	++	1	NEFA	<0.001		Ť
IGF-I-ok (\geq 39 ng/mL): 18			Leptin	0.022	 ↑	
IGF-I-% (wk 1 AP to wk 1 PP)	++	2	IGF-I	< 0.001	 ↑	Ţ
IGF-I-%-ltd (<67.9%):18			NEFA	0.003	Ļ	↑ 1
IGF-I-%-ok (≥67.9%):19					-	
Leptin (wk 1 PP)	++	1	Leptin	< 0.001	ſ	\downarrow
Leptin-ok (≥4.1 ng/mL): 19			IGF-I	0.014	↑	\downarrow
Leptin-ltd (<4.1 ng/mL): 18						

Table 2. Criteria of classification and variables affected in considering the earliest possible time of analysis (t) and the effort required for analysis (e)

¹The entire time-course of the blood concentrations of the different variables was compared between each of the -ok and the -ltd groups (fixed effect); only those variables for which significant differences between the groups were found are shown.

²The effort required for analysis (e) and the earliest possible time of analysis (t) for the different parameters were considered and rated as follows: t, +++ = determination at wk 2-1 antepartum (AP); ++ = determination at wk 1 postpartum (PP); + = determination at wk 2 PP; and - = determination at wk 3 PP; e, 0 = no blood sample required; 1 = 1 blood sample required; and 2 = 2 blood samples required.

 $^{3\uparrow}$ = greater values for the variable than the other group; and \downarrow = lower values than the other group.


DairyCare

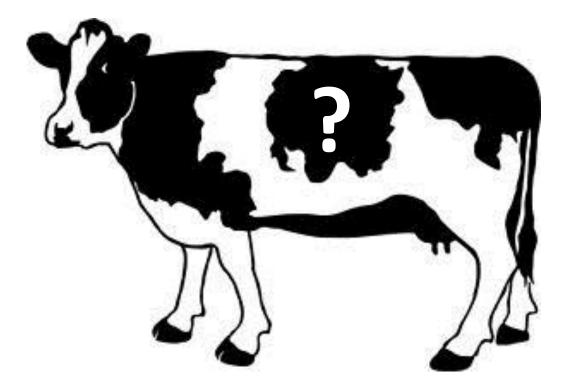
Structure: cystein-rich 109 amino acid poypeptide, circulates mainly as hexamer

Resistin

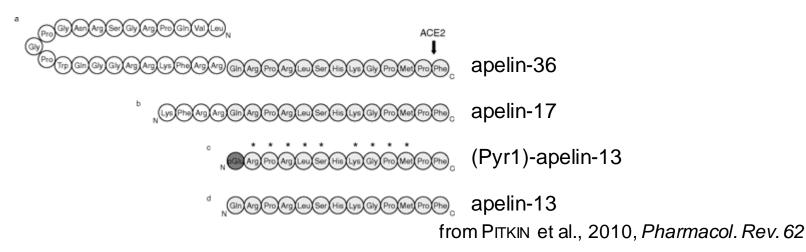
Circulating concentrations :

<u>positively</u> correlated with body fat content <u>positively</u> correlated with insulin <u>resistance</u> range reported for dairy cows 20 – 100 ng,

COST ACTION 1st DairyCare Conference, Copenhagen, August 22nd and 23rd, 2014 **FA 1308**



Resistin as biomarker for metabolic health?



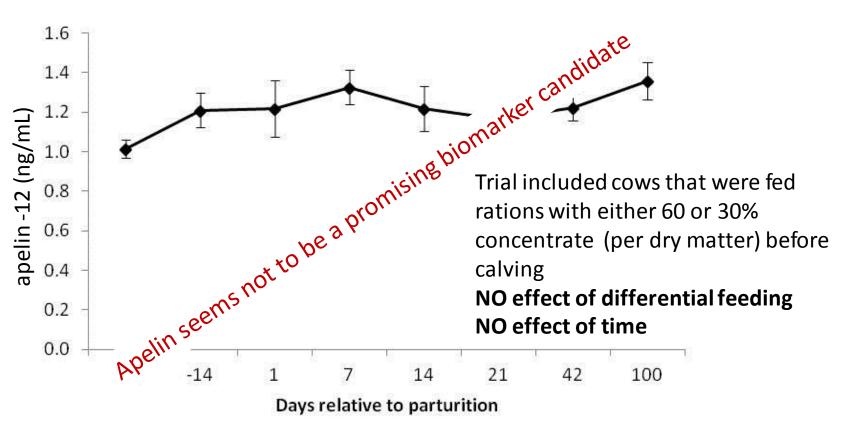
Structure : Apelin is synthesized as a 77 amino acid (AA) prepropeptide which is cleaved in different biologically active fragments

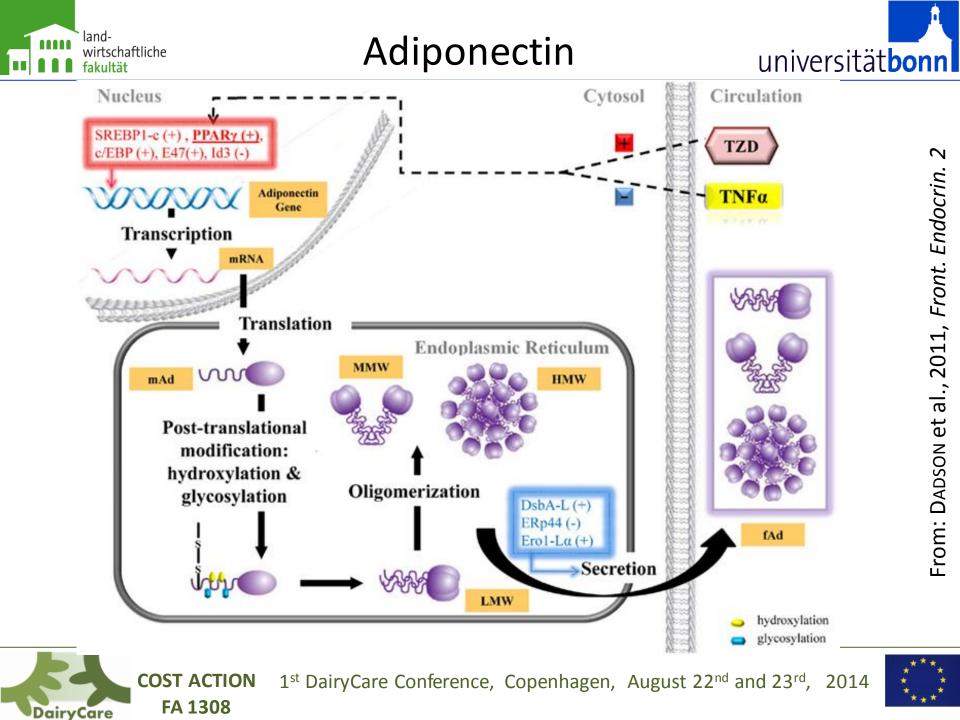
apelin-17, apelin-13, and [Pyr1]apelin-13 bind the G proteincoupled receptor APJ with different affinities

Circulating concentrations: positive correlation with body fat,

Increased insulin levels rather than adiposity is the major determinant of apelin in mice (Boucher et al., 2005)

range in dairy cows: ~ 1 ng/mL

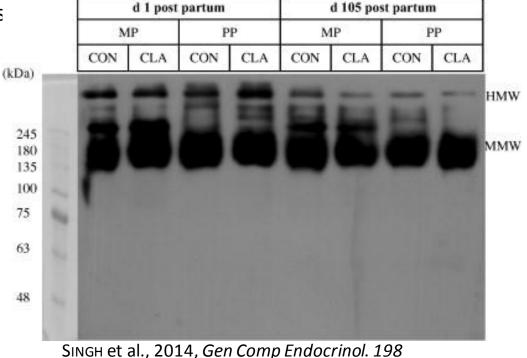



universität**bonn**

Physioplogical changes of the apelin serum concentrations during the transition period

WEBER et al., 2014; J. Anim Sci., 92/J. Dairy Sci, 97, p 710

Adiponectin



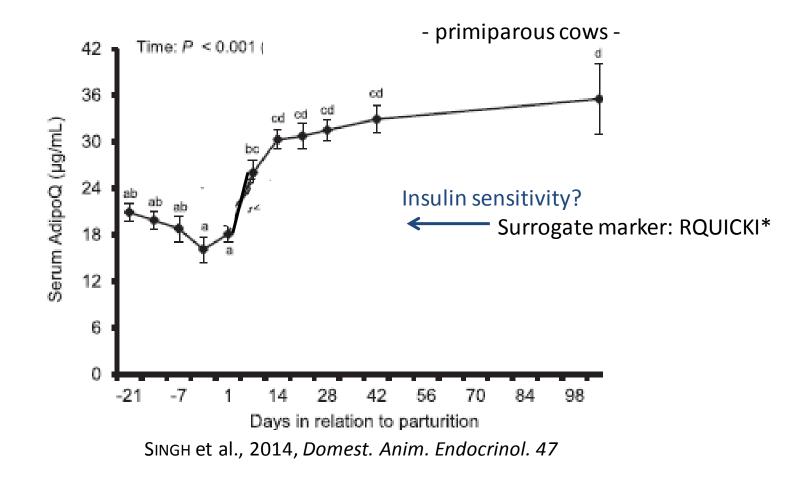
Circulating concentrations :

<u>negatively</u> correlated with body fat content <u>positively</u> correlated with insulin sensitivity range reported for dairy cows 10 – 50 µg/mL!

Circulating molecular weight forms in cattle:

largely unaffected by physiological s (sex, age, reproductive state)

COST ACTION 1st DairyCare Conference, Copenhagen, August 22nd and 23rd, 2014

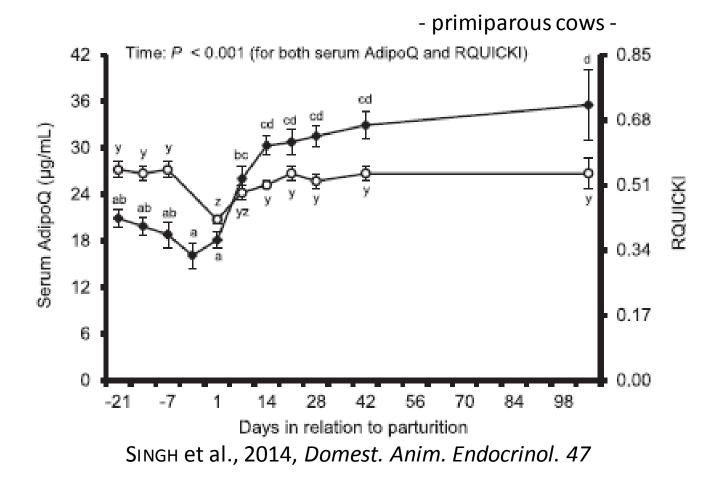


land-

fakultät

wirtschaftliche

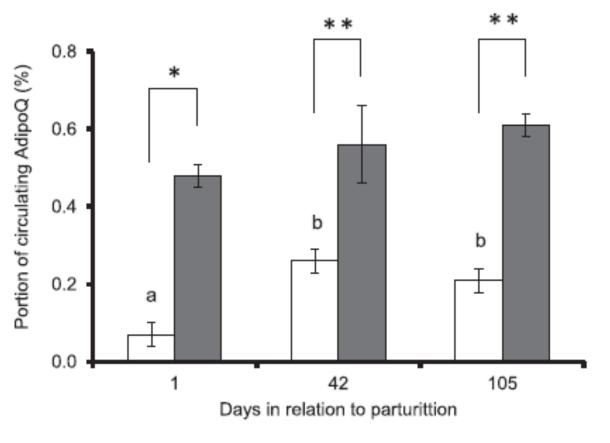
*RQUICKI = 1/[log (glucose, mg/dL) + log (insulin, μU/mL) + log (NEFA, mM)] (HOLTENIUS & HOLTENIUS, 2007, Acta Vet. Scand. 49)



land-

fakultät

wirtschaftliche



to circulating adiponectin

- primiparous cows -

□sc AT ■vc AT

SINGH et al., 2014, Domest. Anim. Endocrinol. 47

land-

fakultät

wirtschaftliche

COST ACTION 1st DairyCare Conference, Copenhagen, August 22nd and 23rd, 2014

S COWS -Multiple linear regression analyses of the relationship between AT depot measures with serum AdipoQ concentration.

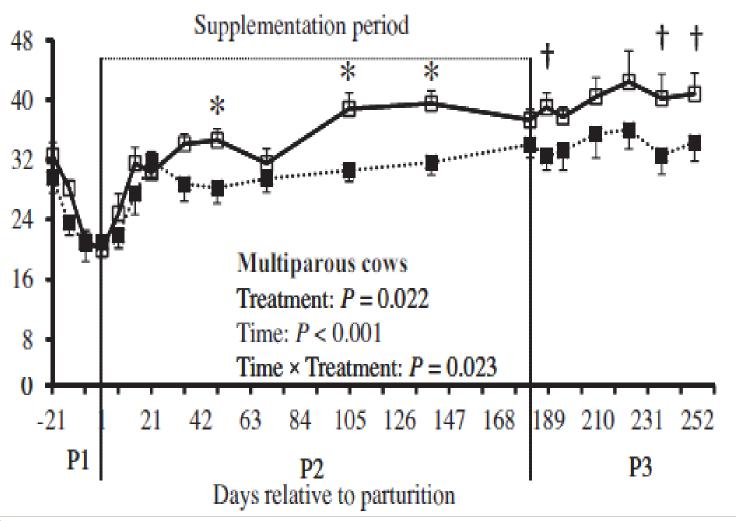
(9)	Predictor variable	Standardized β coefficient	Р	Adjusted R ²
0	Model 1			0.654
g	Log retroperitoneal	0.650	< 0.001	
<u>ē</u> .	AdipoQ, ng/g tissue			
¥	Log tail-head AdipoQ	0.366	0.009	
Bu	ng/g tissue			
atii	Model 2			0.608
2	Retroperitoneal	-0.564	< 0.001	
÷	tissue mass, kg			
č	Log omental total	0.515	0.001	
on of circulating AdipoQ (%)	AdipoQ, µg			

Abbreviations: AdipoQ, adiponectin; AT, adipose tissue.

Portio Parameters identified as significant independent predictors for serum adiponectin in dairy cows are presented.

For model 1 AdipoQ concentrations (ng/mg tissue) in each individual AT (mesenterial, omental, retroperitoneal, sternum, tail-head, and withers AT) were included, whereas for model 2 retroperitoneal tissue mass (kg), retroperitoneal adipocyte size (μm^2), wither adipocyte size (μm^2), and log omental total AdipoQ (µg) were included because of their strong relationship with serum AdipoQ (r > 0.55).

SINGH et al., 2014, Domest. Anim. Endocrinol. 47

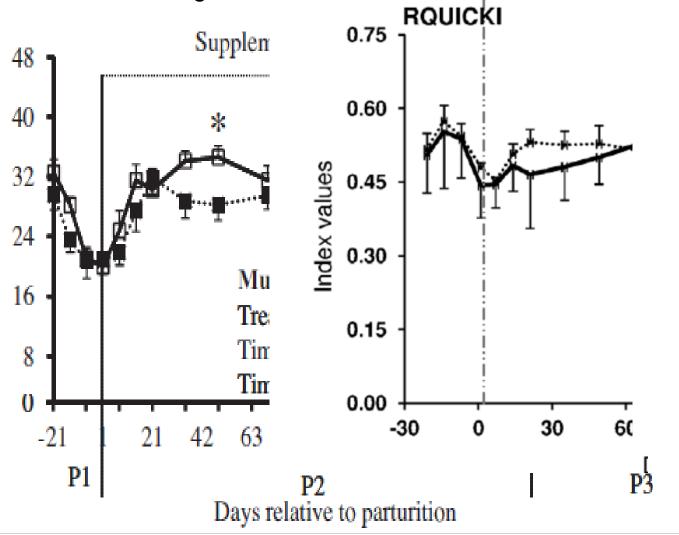


Adiponectin

Change of the circulating concentrations during the transition period in dairy cows:

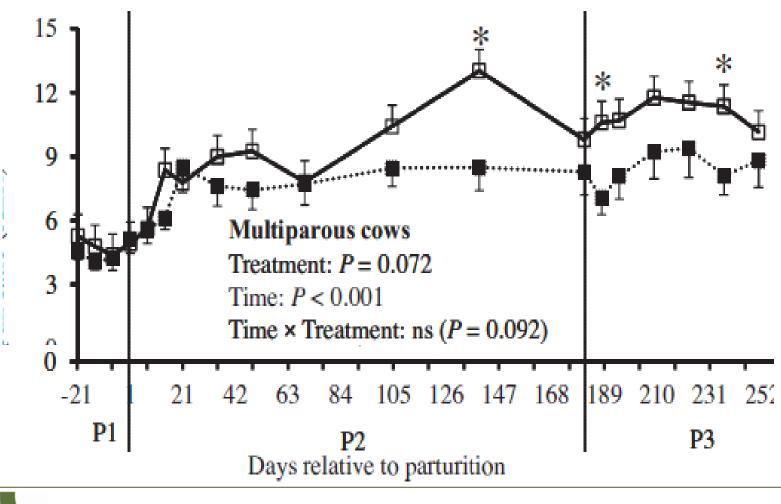
DairyCare COST ACTION FA 1308

CTION 1st DairyCare Conference, Copenhagen, August 22nd and 23rd, 2014



Adiponectin

Change of the circulating concentrations during the transition period in dairy cows:


COST ACTION 1st DairyCare Conference, Copenhagen, August 22nd and 23rd, 2014 **FA 1308**

Adiponectin : leptin ratio

COST ACTION 1st DairyCare Conference, Copenhagen, August 22nd and 23rd, 2014 FA 1308

Summary and critical assessment I

Adiponectin seems the most promising candidate, because

- it was correlated with RQUICKI BUT: r = 0.126 0.485, RQUICKI is a surrogate marker
- it revealed treatment effects supported by RQUICKI data **BUT: relevance unknown**
 - visceral contribution > subcutaneous BU

BUT: database limited to one slaughter experiment in primiparous cows

Impaired insulin regulation of energy metabolism = etiologic key component for metabolic diseases typically for the transition period

Adiponectin holds promise as an indirect biomarker of insulin sensitivity

General sceptisism:

- differences are relatively small
- predictive value for metabolic diseases has not yet been tested,
- data on sensitivity-specificity are lacking,
- analytical effort is considerable,
- best time of sample collection remains open
- reference values are not defined
- No perspective for non-invasive sampling (?...adiponectin in saliva...?)

HOWEVER,

- DairyCare combines different aspects, different expertises
- The combination per se holds promise
- Even though we might not come up with "patent solutions"

The welfare issue requires our efforts, we need to do what we can

My GROUP:

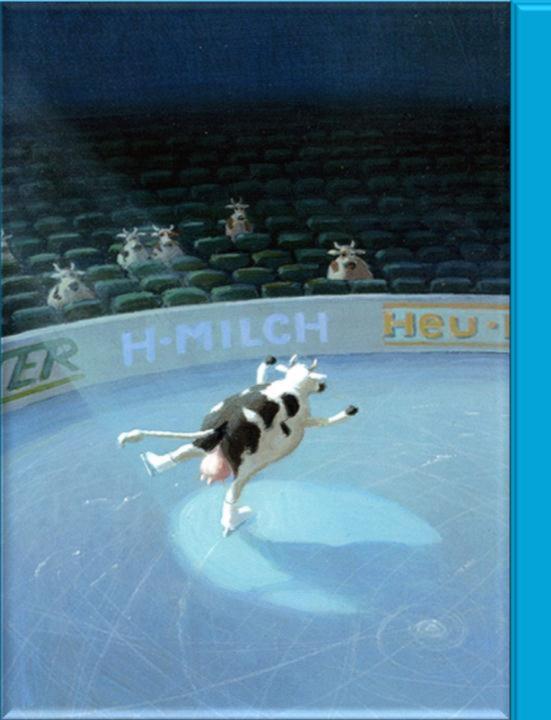
<u>Technician</u>

• Birgit MIELENZ

PhD students

- Sabrina HACHENBERG
- Johanna HEINZ
- Behnam SAREMI
- Shiva SINGH
- Martina WEBER

<u>Scientists</u>


- Susanne HÄUßLER
- Manfred MIELENZ
- Ute MÜLLER

Cooperations:

Sven DÄNICKE, FLI Braunschweig Jürgen REHAGE, TiHo Hannover

Fabrizio CECILIANI, Uni Milan, IT

...keeping the balance....

Thank you for your attention