

Automated detection of lameness in dairy cows compared with claw diagnosis and mobility score

Vivi M. Thorup¹ & Nick J Bell²

¹IceRobotics, South Queensferry, UK

²Bos International, Wimborne, UK

Fifth DairyCare Conference, Thessaloniki, Greece, March 19th 2018

- > 37% (range 0-79%) lame cows in the UK (data collected 2006-07)
- Only 20-25% of lame cows are noticed by farmers
- ➤ Lame cows are estimated to be in severe pain for ~3 months

Archer et al, 2010 In Practice 32: 492-504
Barker et al 2009 Journal of Dairy Science 93: 932-941
Bruijnis et al 2012 Animal 6: 962-970

Lameness Reduces

- Yield: 270-857 | milk lost over a lactation
- Oestrus behaviour: mounting period shortened from 5.2 to 1.8 h
- Reproduction: first ovulatory oestrus delayed by 19 days
- Longevity: increased culling risk (HR=1.45 for MS>3, HR=1.74 for MS>4)

Lameness affects Behaviour

Lying time
Number of steps
Leg activity

And we can measure behaviour automatically

Locomotion score

Blackie et al, 2011 Applied Animal Behavioral Science 134: 85-91

Thorup et al, 2015 Animal 9: 1704-12

Wadsworth et al, 2016 Proc. PDF Conference, Leeuwarden, NL: 315-19

The DASIE Project

- Dairy Animal Sensor Integrated Engineering
- ➤ August 2014 2017
- ➤ Budget 1.8 m £
- > Supported by the UK government
- > 4 partners
- Data from 6 commercial farms & 1 research herd

Lameness Model Development

- ➤7 farms visited in 2016, 1 farm biweekly
- ➤ 6755 visual mobility scores (MS)
- ▶1 of 2 trained observers
- \triangleright Scale 1-5¹

Lameness Detection model

One objective Automated Lameness Probability (ALP) per cow per day

¹Chapinal et al, 2009 Journal of Dairy Science 92: 4365–74

Compare ALP & Claw Diagnosis

Farm

B

C

D

E

Total

- > 5 commercial farms visited in 2017
- ➤ MS-observer picked 50% lame and 50% non-lame cows (AHDB 0-3 scale) for trimming
- Vet performed claw diagnosis blind to MS and ALP

1,500

145

467

610

200

IceQube cows

500

137

462

606

181

1,886

Herd size

and ALP	
MS cows	IceQube, MS & trimmed
325	108
115	95
378	52
483	64
166	56
1,467	375

Mobility Scores by Farm

Farm lameness prevalence from 24 to 62%.

Aim: to trim 50% non-lame and 50% lame cows.

Claw Diagnoses

Severe diagnoses					Mild diagnoses		Healthy/not lameness causing		
Major claw lesions		Major skin lesions		Major other		Minor claw lesions		Other	
Sole ulcer	45	Digital dermatitis	63	Upper leg	7	Sole bruise	71	Good feet	121
Heel ulcer	5	Foul in the foot	1	Shackles	2	Sole overgrowth	3	DD (M3; M4*)	7
Claw necrosis	25			Unknown but lame	3	Thin sole	5	*low pain react	ion
White line	12					Cut heel	1		
						Stone	3		
						Corkscrew claw	1		
	87		64		12		84		128

Total = **375 cows** with complete data Many cows with severe diagnoses

Detection Examples

Cow #348.766. ALP 2 weeks prior to Good Feet diagnosis, MS=2

Conclusions

- Lameness remains a very severe welfare problem which MUST be addressed on every farm
- Behavior-based detection some alerts due to other types of disease
- Develop appropriate filtering of alerts
- Ongoing validation on several farms
- PPV of ALP and MS are similar
- ALP is objective
- ALP runs every day

potential as benchmarking tool

— what do you use as gold standard when modelling?

Further Development

UK research herd, ~100 cows, 2 milkings/day

4 commercial Danish farms, 366 cows, 2 milkings/day

Thorup et al, 2016 Proc. 4th DairyCare Conference, Lisbon, p 16

Maselyne et al (2017) Res Vet Sci 110: 1-3 (DC STSM)

