

School of Biodiversity, One Health & Veterinary Medicine

Validating accelerometer technology to detect play behaviour in weaned dairy calves

Ciara McKay¹, Dr Kathryn Ellis¹, Prof Marie Haskell², Dr Nicola Gladden³

¹ Scottish Centre for Production Animal Health and Food Safety, University of Glasgow School of Biodiversity, One Health and Veterinary Medicine, Glasgow, United Kingdom ² Scotland's Rural College (SRUC), West Mains Road, Edinburgh, United Kingdom

³ School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, United Kingdom

THE IMPORTANCE OF CALF WELFARE

The Red Tractor's Role in the GB Calf Strategy

Consumers Care About Calves

EFSA: house calves in small groups to improve welfare

Share: 💟

Published: 29 March 2023 |

THE IMPORTANCE OF CALF WELFARE

- Drive to promote positive welfare states
- Play behaviour is commonly observed in young animals
- Play is recognised as an indicator of positive welfare

- Observational methods of recording animal behaviour are labour intensive and often impractical
- Accelerometers are being increasingly validated and used in the analysis of farm animal behaviour
- The objective of this study was to determine the ability of a tri-axial accelerometer device to detect play behaviour in <u>weaned</u> dairy calves

- Eight weaned female Holstein-Friesian calves (age 118 ± 16 d) recruited from one Scottish dairy farm
- Tri-axial accelerometers (IceTag®, Peacock Technology) attached to the lateral hindlimb of each calf for a 48-hour period
- Continuous video monitoring of the calves over the same 48-hour period
- Sensor data exported in 15-min intervals, with focus on "Motion Index (MI)" – an IceTag generated measure of overall animal activity

- Behavioural analysis of corresponding I5-min intervals conducted from video recording using one-zero sampling, where calf activity was scored as "No Play (0)" or "Play (1)"
- Visual observations and MI data combined in Excel and analysed using Minitab
- The MI threshold best correlated with visual observations established via 2x2 contingency tables to determine Sensitivity (Se), Specificity (Sp) and Balanced Accuracy (^{Se+Sp}/₂) at various MI thresholds
- Optimal MI threshold to detect play behaviour confirmed using Classification and Regression Tree (CART) analysis using 10-fold analysis to create a training and test dataset

University of Glasgow

Figure 1. Stacked column chart demonstrating the percentage of 15-min intervals with recorded play events per calf in the 48-hour observation period. Any intervals in which the calves were not visible were excluded from analysis (mean 5%, range 0-12%).

MI threshold	Sensitivity	Specificity	Balanced accuracy
≥ 25	100.00%	28.75%	64.38%
≥ 60	95.43%	91.00%	93.21%
≥ 65	94.92%	92.58%	93.75%
≥ 66	94.92%	92.65%	93.79%
≥ 67	94.92%	92.73%	93.83%
≥ 68	94.42%	93.13%	93.77%
≥ 69	94.42%	93.60%	94.01%
≥ 70	93.40%	93.92%	93.66%
≥ 80	89.34%	96.37%	92.85%
≥ 281	14.21%	100.00%	57.11%

Table 1. Sensitivity and specificity calculations based on 2x2 contingency tables for various MI thresholds

MI threshold	Sensitivity	Specificity	Balanced accuracy
≥ 25	100.00%	28.75%	64.38%
≥ 60	95.43%	91.00%	93.21%
≥ 65	94.92%	92.58%	93.75%
≥ 66	94.92%	92.65%	93.79%
≥ 67	94.92%	92.73%	93.83%
≥ 68	94.42%	93.13%	93.77%
≥ 69	94.42%	93.60%	94.01%
≥ 70	93.40%	93.92%	93.66%
≥ 80	89.34%	96.37%	92.85%
≥ 281	14.21%	100.00%	57.11%

Table 1. Sensitivity and specificity calculations based on 2x2 contingency tables for various MI thresholds

RESULTS: MITHRESHOLD CALCULATION

- CART defined MI threshold the same as that calculated using 2x2 contingency tables at > 68.5
- High sensitivity (93.9%) and specificity (91.7%) achieved in the test dataset

Figure 2. Two node optimal tree diagram for predicting play events using MI

Model Summary

Statistics	Training	Test
Area under ROC curve	0.94	0.93
95% CI	(0.48, 1)	(0.91, 0.95)

Figure 3. Receiver operating characteristic (ROC) curve demonstrating the sensitivity and specificity of MI \geq 68.5 based on a training and test dataset

UTILISING TOOLS TO MEASURE CALF WELFARE

- IceTag accelerometers can detect play behaviour in weaned dairy calves
- Care must be taken if extrapolating results as validation can be limited to specific study design
- Further research work implementing this technology is ongoing
- Future value in on-farm welfare measurement

School of Biodiversity, One Health & Veterinary Medicine

Thank you for your attention! Questions?

Acknowledgements and funding:

- Thank you to farm staff and Veterinary Bioscience Honours student Heather
 Cousar for assistance with data collection
- Technical support and funding from Peacock Technology (formerly IceRobotics)
- Funding from the Hannah Dairy Research Foundation (HDRF): Small Grant Competition 2022
- Additional funding from Ceva Animal Health Ltd, University of Glasgow James Herriot Fund & the James Houston Crawford Endowment Fund

c.mckay. 1@research.gla.ac.uk

#UofGWorldChangers f 5 @ @UofGlasgow