KU LEUVEN

Computer vision technology for automated lameness assessment

Presenter: Tom Van Hertem

Co-Authors: S. Viazzi, M. Steensels, C. Bahr, C.E.B. Romanini, C. Lokhorst, A. Schlageter Tello, E. Maltz, I. Halachmi and D. Berckmans

DairyCare COST Cordoba - March 2015

www.m3-biores.com

Acknowledgements

- Financial support:
 - Industrial Research Fund KU Leuven (IOFHB/13/016)
 - FP7-PEOPLE-ITN-2008
- Scientific support:

Bio

Busin€ss

∧ DeLaval

Agricultural Research Organization (ARO) Volcani Center, Israel

- Practical support:
 - Technicians Ludo Happaerts (KUL) & Aharon Antler (ARO)
 - Farmers and staff.

KU LEUV

Outline

- Why is lameness detection important?
- Computer vision technology
- Implementation of camera technology
- Behaviour and performance sensing
- Multi-sensor lameness detection
- General conclusions
- EU-PLF project

What is lameness? Why is lameness important?

Dairy industry in Flanders

Year	# dairies	#cows/dairy	Kg milk	Kg fat	Kg protein	ejr
2006	3433	45	7942	332	271	1920
2008	3100	49	8014	336	276	1953
2010	2802	55	8175	342	280	1983
2012	2469	59	8317	347	287	2026
2014	2166	67	8392	344	289	2026
	-27%	+49%	+6%	+4%	+7%	+6%

Source: mpr-uitslag 2014 (www.crv4all.be)

KU LEU

→ Intensification and up-scaling

→ Less time per animal

Introduction to lameness

- What is lameness?
 - <u>deviation in gait and posture</u> due to <u>pain or</u> <u>discomfort</u> resulting from <u>hoof and leg injuries and</u> <u>diseases</u>.

Introduction to lameness

• Deviation in gait and posture...

Gait

Asymmetry Reluctance Bear Weight Speed Stride length Tracking-up Affected Leg Evident Abduction-Adduction

Posture

Back curvature Head-Bob Hip Hick

Others

Difficult turning Difficult rising Tenderness Affected behaviour

KU LEUVEN

Lameness assessment

- Locomotion score
 - Subjective
 - Time consuming
 - Expensive
- Aim: Lameness detection based on PLF
 - → Automated
 - → Objective
 - → Continuous
 - → (Early) warning

KU LEUVEN

Computer vision technology

Why computer-vision?

- Replace eyes of farmer
- Biggest effects of lameness:
 - Not on cow behaviour
 - Not on cow performance
 - BUT on cow locomotion
- Non-invasive
- Cheap
- 1 sensor for entire herd

11

KU LEUVEN

2D RGB computer vision

Replace eyes of farmer

Lameness → Recording of cow gait → after milking

2D Video preprocessing

C:\NotSynchro\videos\setup.avi

2D side view computer vision

• Manual labeling of POI \rightarrow lameness classification model

Limitations:

- Robustness of segmentation
 - Foreground (cow) <-> background
 - Need for static background
 - Computational power vs. real-time

• Side view

Interfered management practices

KU LEUVEN

17

19

KU LEUVEN

KU LEUVEN

Back spine extraction

20

20

CIGR - September 2014

Not Lame

Lame

300 400

500 600 700 800

-200 -100

100 200

CIGR - September 2014

Algorithm output

Back Posture Measurement
 BPM

Variables 01, 02, 03 and L1 extracted from the reconstructed back curvature of the cow.

Comparison of a threedimensional and twodimensional camera system for automated measurement of back posture in dairy cows

Computers and Electronics in Agriculture Volume 100 2014 139 - 147

KU LEUVEN

Algorithm Verification I

Verification matrix

	Sensitivity	Specificity	Accuracy	n
Calibration	0.76	0.93	0.90	293
Verification	0.54	0.90	0.83	1100

- Sensitivity Specificity Accuracy
- = ability to detect lame animals
 = ability to detect not-lame animals
 = ability to detect lame and not-lame animals
 (correct classification rate)

KU LEU

Algorithm Verification II

Intermediate conclusions

- Strong relation between BPM and locomotion score
- Classification more robust when considering multiple recordings
- Difficulty in identifying mildly lame cows

➔ need for continuous measurements

On-farm implementation of camera technology

Process automation

- Fully automatic video recording & processing
 - ∘ Automatic trigger → photocell + RFID
 - Automatic identification
 - RFID-antenna
 - Overlap window for timestamp correlation
 - Recording time stamp
 [recording pc]
 - RFID time stamp [farm pc]
 - Time delay (every session re-estimated!)
 - 100% accuracy!
 - Automatic analysis (BPM-measurement)
 - Offline
 - After the milking + recording session
 - Filter to select good videos

Video recording performance

On recording session level

Performance

- Collection period: 20/09/2013 19/08/2014
- 630+ recording sessions
- 111900+ BPM-scores

Step in Process	Absolute number	Relative Number [%]
Number of cows milked	226 ± 9	100
Number of cows RFID	224 ± 10	$99,1 \pm 1,3$
Number of recorded videos	197 ± 16	$88,1 \pm 6,6$
Number of video-cowID links	178 ± 14	79,4 ± 5,5
Number of analysed videos	110 ± 24	49,3 ± 10,8

31

KU LEUVEN

Performance per session: analysis

Recording/Milking session performance

Video ID = 77,7% BPM-score = 48,2%

- Impact of cow traffic
- Impact of selection gate (setup)
- Hardware failure
 - Photocell
 - RFID

MISSED IDENTIFIED SCORED

KUI

Cow traffic: crowding in alley

KU LEUVEN

34

Video recording performance

On cow individual level

Performance per cow

Trade-off for selected window size

Number of obtained scores from videos

KU LEUVEN

Number of videos in data window

38

Example output of 1 cow

Herd specific factors affecting analysis rate

KUL

- Parity
 - Parity 1: r = -0,51
 - Parity 4: r = 0,38
- Lactation stage
 - Late (271-305 days after calving): r = -0,49
 - \circ Early (0 20 days after calving): r = 0,25
- Milking duration: r = 0,43
- Autumn & Spring < Winter & Summer

r = correlation coefficient with analysistrate

Discussion

- System performance ~ time of farmer
- Optimal traffic intervals for free cow traffic?
- How many scores do we need for lameness detection?
- Type of milking parlour ~ location of recording system
- Can other sensor data help?

KUL

Behaviour and performance sensing in dairy cows

Milk yield in relation to lameness treatment

43

KU LEUVEN

Activity in relation to lameness treatment

KU LEUVEN

Behaviour and performance sensors

- Milk meter MM27BC (DeLaval)
 - o Milk yield
 - Milk conductivity
 - Milk flow rate
- Activity meter system (DeLaval)
 - Activity [bits/hour]
- Cow recognition
 - Milking time/order

KU LEUV

Data analysis

- Univariate lameness classifiers
 - Receiver Operating Characteristic (ROC)-curve
 - Area Under Curve (AUC)

AUC	Test performance
[0,9-1]	Excellent
[0,8-0,9[Good
[0,7-0,8[Fair
[0,6-0,7[Poor
[0,5 – 0,6[Fail

KU LEUVEN

- Multivariate models
 - Forward stepwise binary logistic regression

Data analysis

- Gold standard
 - Human visual locomotion scoring (LS)
 - Discrete numerical 5-point score
- Binary reference

Dataset: n = 3439 cow-observations

Univariate analysis

Variable	Variable class	LAME - AUC
Theta2	Video	0.7199
Back Posture Measure	Video	0.7021
Theta3	Video	0.6745
Inverse radius	Video	0.6724
L-distance	Video	0.6715
Number of Frames	Video	0.5963
Walking Speed	Video	0.5722
Theta1	Video	0.5452
Daytime activity	Activity	0.6155
Daily activity	Activity	0.5898
Night-time activity	Activity	0.5397
Milk peak conductivity	Milk	0.5846
Milk conductivity	Milk	0.5789
Milking order	Milk	0.5560
Milk peak flow rate	Milk	0.5444
Daily milk yield	Milk	0.5372
Lactation stage	Milk	0.5359

Multi-sensor lameness detection

Multivariate binary logistic regression model

- Reference = LAME (12)(345)
- Resulting model AUC = 0,76

Variable	Coefficient	Standard error	Step
Constant term	-15.8804	1.5034	0
BPM	15.1437	0.8320	1
Daytime activity	0.0014	0.0003	2
Theta1	0.0658	0.0078	3
Walking Speed	-3.4867	0.6163	4
Daily activity	-0.0021	0.0002	5
Milk conductivity	0.2346	0.0835	6
Daily milk yield	-0.0664	0.0142	7
Milk peak flow rate	0.0996	0.0259	8
Milking order	0.4257	0.1399	9
Lactation stage	-0.0009	0.0005	10

KU

Does multivariate sensing improve lameness detection?

Model	Included variables ¹	AUC		Sensitivity (%)		Specificity (%)		Accuracy (%)	
Single sensor systems		Mean	std	Mean	std	Mean	std	Mean	std
Video	BPM, T1, T2, T3, L1, IR, WS, nFr	0.732	0.011	48.4	3.3	83.6	2.8	69.3	1.8
Activity	dACT, nACT	0.633	0.018	29.9	3.7	83.9	1.9	61.9	1.3
Milking	MY, MO, MCo, MPFR, DIM	0.604	0.026	19.2	2.7	87.2	4.6	59.5	2.1
Milk	MY, MO	0.562	0.037	7.0	2.1	96.3	1.5	60.0	0.7

¹ The included variables in the models are milk yield (MY), milking order (MO), lactation stage (DIM), milk conductivity (MCo), milk peak flow rate (MPFR), daytime activity (dACT), night-time activity (nACT), number of frames (nFr), walking speed (WS), back posture measure (BPM), Theta1 (T1), Theta2 (T2), Theta3 (T3), L-distance (L1) and in √2 rse radius (IR).

KU LEUVEN

Does multivariate sensing improve lameness detection?

Model	Included variables ¹	AUC		Sensitivity (%)		Specificity (%)		Accuracy (%)	
Single cons	or systems	Mean	std	Mean	std	Mean	std	Mean	std
Video	BPM, T1, T2, T3, L1, IR, WS, nFr	0.732	0.011	48.4	3.3	83.6	2.8	69.3	1.8
Activity	dACT, nACT	0.633	0.018	29.9	3.7	83.9	1.9	61.9	1.3
Milking	MY, MO, MCo, MPFR, DIM	0.604	0.026	19.2	2.7	87.2	4.6	59.5	2.1
Milk	MY, MO	0.562	0.037	7.0	2.1	96.3	1.5	60.0	0.7
Double sens	sor systems								
Milking & Video	MY, MO, DIM, MCo, MPFR, BPM, T1, T2, T3, L1, IR, WS, nFr	0.755	0.033	52.0	5.8	83.2	2.0	70.5	3.1
Activity & Video	dACT, nACT, BPM, T1, T2, T3, L1, IR, WS, nFr	0.750	0.031	51.4	4.0	83.1	2.3	70.2	2.1
Milking & Activity	MY, MO, DIM, MCo, MPFR, dACT, nACT	0.669	0.028	38.0	2.5	80.7	2.1	63.3	1.6
Milk & Activity	MY, MO, dACT, nACT	0.649	0.028	34.8	4.0	82.7	2.2	63.2	2.1
Multi-senso	r system								
Milking, Activity & Video	MY, MO, DIM, MCo, MPFR, dACT, nACT, WS, nFr, BPM, T1, T2, T3, L1, IR	0.757	0.029	52.1	4.7	83.2	2.3	70.5	2.7

¹ The included variables in the models are milk yield (MY), milking order (MO), lactation stage (DIM), milk conductivity (MCo), milk peak flow rate (MPFR), daytime activity (dACT), night-time activity (nACT), number of frames (nFr), walking speed (WS), back posture measure (BPM), Theta1 (T1), Theta2 (T2), Theta3 (T3), L-distance (L1) and in √erse radius (IR).

KU LEUVEN

Discussion points

- Correct variable vs. Multivariate analysis
- How good is our gold standard method?
 - 5-point numerical score to quantify changes in *n* indicators

General Conclusions

- Lameness affects cow locomotion, behaviour and performance
- Sensor technology can help us identify the changes
- Key feature variables for dairy cow locomotion assessment can be extracted from captured video recordings
- An automatic computer vision prototype-system was successfully installed in a commercial farm
- A multi-sensor system is not outperforming a single sensor system
- Questions?

tom.vanhertem@biw.kuleuven.be claudia.bahr@biw.kuleuven.be

daniel.berckmans@biw.kuleuven.be

KU LEUVEN www.m3-biores.com

Future research

- Impact of cow traffic on system implementation
- Changes from individual behaviour
 - Cow specific threshold
 - Large pool of historical data
- Warning list to farmer
 - \rightarrow value creation

KU LEUVEN

EU-PLF project

Bright Farm by Precision Livestock Farming <u>www.eu-plf.eu</u>

Smart Farming for Europe

Value creation through Precison Livestock Farming

- Title: Bright Farm by Precision Livestock Farming (EU-PLF)
 Animal and farm-centric approach to Precision Livestock Farming in Europe
- Objective: The objective is to deliver a validated Blueprint for an animal and farmcentric approach to innovative livestock farming in Europe proven through extensive field studies.
- Project funding:
 EU Collaborative project
- **Budget:** 5.900 000 Euro
- Time line: 4 years
- Project Partners: 20

KULeuven, SLU, Bristol, INRA, Teagasc, ARO, UMIL, WU, DLO, RVC, FANCOM, SoundTalks, PLF AgritechEurope, Xenon, ABROX, M&M, Syntesa, VITAMEX, EAAP, GEA

Objectives of the EU-PLF project Validated Blueprint

Core deliverable: <u>Validated Blueprint</u>

- "manual" for farmers, industry and stakeholders
- website support

PLF -----> Operational system at <u>farm level</u>

Objectives of the EU-PLF project Key Indicators and Gold Standards

- Core deliverable: Validated Blueprint
- Define <u>Key Indicators</u> + <u>Gold Standards</u>

Objectives of the EU-PLF project Value Creation

- Core deliverable: <u>Validated Blueprint</u>
- Define Key Indicators + Gold Standards
- Relate KIs on farm to Social and Economic value measures for <u>Value</u> <u>Creation</u>

Objectives of the EU-PLF project SME Drive

- Core deliverable: <u>Validated Blueprint</u>
- Define Key Indicators + Gold Standards
- Relate KIs on farm to Social and Economic value measures for <u>Value</u>
 <u>Creation</u>
- SME drive

High-tech SMEs <----> Market players

Objectives of the EU-PLF project Farm level

- Core deliverable: <u>Validated Blueprint</u>
- Define Key Indicators + Gold Standards
- Relate KIs on farm to Social and Economic value measures for <u>Value</u> <u>Creation</u>
- SME drive
- Realise all these in different farms
 - 10 Pig farms
 - 5 Broiler farms
 - 5 Cow farms

Value creation through **P**recison Livestock **F**arming

What is a Blueprint

A design plan, descriptions of concepts, schemes, technical drawings, plans, protocols, detailed working methods and descriptions that act as a model on how to realise the implementation of PLF-technologies in farms and how to create value with it

Creation of the Blueprint

- Description of the different steps in the logic line
- Choices at the different steps and how they are made
- Link to value creation for the Farmer
- Validation via the SME drive

Validation of the Blueprint

- Info- and training- sessions for young entrepreneurs and potential spin-out activities
- Competition for a new PLF system
- Four winning teams will get funding to realise a prototype at farm level
 - They will use the Blueprint
 - <u>They will validate the Blueprint</u>

Thank you for your attention

www.eu-plf.eu

Smart Farming for Europe

Value creation through Precison Livestock Farming

Acknowledgments and Disclaimer

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement n° 311825

The views expressed in this presentation are the sole responsibility of the author(s) and do not necessarily reflect the views of the European Commission.

Foot Note

Smart Farming for Europe

Value creation through **P**recison **L**ivestock **F**arming