DairyCare conference, Copenhagen (DK) 22th of August, 2014

Separating normal from abnormal variation caused by lameness in a detection model

Institut voor landbouw- en Visserijonderzoek

Annelies Van Nuffel

Stephanie Van Weyenberg
Bart Sonck
Geert Opsomer
Bart De Ketelaere
Tim Van De Gucht
Koen Mertens
Jürgen Vangeyte
Wouter Saeys

Dairy lameness situation

Negative effect on cow health, welfare, longevity and production High prevalence hugely underestimated

Detect those cows that need extra attention

Dairy lameness situation

Negative effect on cow health, welfare, longevity and production High prevalence hugely underestimated

Detect those cows that need extra attention

How to avoid false alerts

1. Ignore non-lameness causes for changes in gait

 Use a detection algorithm based on individual thresholds compared to group thresholds

Gaitwise

TIME - LOCATION - FORCE

Gaitwise

10 Specific variables

- → Stride length
- → Stride time
- → Stance time
- → Step overlap
- → Abduction

→ Asymmetry in

Stepwidth
Steplength
Steptime
Stance time
Force

Environmental and cow- specific factors that influence cow gait

Criteria for cow selection:

- No other health problems (mastitis, ...)
- Non-lame according to expert
- Received no trimming sessions prior and during experimental period

Environmental and cow- specific factors that influence cow gait

Selected factors:

- Light/dark environment
- Wet surface (rain)
- Age
- Production level
- Lactation stage
- Gestation stage

Wet surface

Gaitwise variables	P-value (light)	P-value (we
Asymm stepwidth		
Asymm steplength		
Asymm steptime		
Asymm stance time		
Asymm force		
Stride length $lacktriangle$		
Stride Time		
Stance Time		
Step Overlap		S
Abduction		a

Shorter, more asymmetrical strides with less stap overlap

Gaitwise variable	P-value	P-value	
Asymm stepwidth			
Asymm steplength			
Asymm steptime			
Asymm stance time			
Asymm force			
Stride length			
Stride Time			
Stance Time			
Step Overlap		Slow	ver, more
Abduction			nmetrical str

rides with more abduction

Lactation stage

Gestation stage

Gaitwise variable	P-value (light)
Asymm stepwidth	
Asymm steplength 1	
Asymm steptime	
Asymm stance time	
Asymm force	
Stride length	
Stride Time	
Stance Time	
Step Overlap	
Abduction	

Shorter strides, more asymmetrical with less step overlap

How to avoid false alerts

1. Ignore non-lameness causes for changes in gait

 Use a detection algorithm based on individual thresholds compared to group thresholds

Threshold at group level

Time (days)

Threshold at group level

Threshold at individual level

Threshold at group level

Threshold at individual level

Time (days)

Less false alerts

Threshold at group level

Threshold at individual level

Time (days)

Higher sensitivity

Synergistic Control (SGC)

Statistical Proces Control (SPC):

- Normal variation
- Abnormal variation due to lameness
- → Use of control charts
- → Preprocess data by Engineering Proces Control (EPC)

Synergistic Control (SGC)

Challenges for further development of Gaitwise

- Improve lameness detection
 - Combining Gaitwise data with other data
 - Including information on normal variation
 - Improve the detection by using individual thresholds
 - → SILF-project (poster 9.5.23)

Any questions?

Annelies Van Nuffel
Annelies.vannuffel@ilvo.vlaanderen.be

