The effect of **Dry Period Length** on **Udder Health**

Renny van Hoeij, DVM

T.J.G.M Lam, W. Steeneveld, D.B. De Koning, B. Kemp, A.T.M. Van Knegsel

1. Introduction

- ❖Shorter DP -> Improved NEB¹
- ❖Glucogenic diet -> Improved NEB¹
- ❖Improved NEB -> Better immune function
- ❖Immune function -> Low IMI & mastitis

Shorter DP -> Low IMI & mastitis?

¹ Van Knegsel, 2014

1. Introduction

The effect of DP length and dietary energy source on:

SCC of lactation

SCC elevations

Clinical mastitis

2. Experimental set-up

- **❖**168 cows
- Dry period length: 0, 30, 60 days
- Ration: glucogenic (G) or lipogenic (L)
- ❖Drying off (30-d or 60-d dry cows):
 - 7 days before DP: dry cow ration
 - 4 days before DP: 1x daily milking
 - Drying off: intramammary antibiotic (Supermastidol)

2. Experimental set-up

- Concentrates (glucogenic/lipogenic):
 - 10 days prepartum: 1 kg
 - Postpartum: +0.5kg/d
 - 17 100 days postpartum: max 8.5 kg
- Concentrates (lactation)
 - 100 305 days postpartum

Forages

3. Measurements

- Data: available on every dairy farm
 - Prepartum monthly milk production registration
 - Postpartum daily milk production, and weekly milk components

• SCC

105.000

Elevations

(>200.000 cells/mL after 2 months SCC<200.000 cells/mL)

Clinical mastitis

 SCC was different for dry period length 0 vs. 30 vs. 60

232.200

30

177.800

60

141.400

SCC was not different for ration

181.700

L

184.100

 Elevations of SCC was not different for dry period length

(>200.000 cells/mL after 2 weeks SCC<200.000 cells/mL)

2.36

80%

2.33

82%

1.80

83%

12

Elevations of SCC was not different for rations

(>200.000 cells/mL after 2 weeks SCC<200.000 cells/mL)

2.13

76%

2.20

80%

Ration p=0.53 Ration p=0.60

 Mastitis was not different for dry period length

1.29

WAGENINGEN UR

DPL p=0.96

Mastitis was not different for ration

DPL p=0.75 DPL p=0.82

5. Conclusions

Ration -> no effect on udder health

Cows with 0-d DP-> SCC higher

 DPL -> no effect on mastitis or elevations of SCC

TAKE HOME MESSAGE

Shortening DP

